Persistent disagreement is pervasive in many domains of our intellectual lives, afflicting much of what’s most important to us in our moral, political, religious and philosophical thinking. When one of my views is widely controversial, it’s not plausible for me to think that I’m more intellectually capable and sober-minded about the issues than all those who disagree with me. When disagreement is widespread, there are just too many people on the other side. Line them all up in order of descending intellectual virtue: I should expect the people at the front of the line to be my superiors. And it’s also implausible for me to think that I’m aware of some decisive argument or evidence that nobody on the other side appreciates. Controversial views are hotly debated, and that tends to make plain all the relevant arguments and counterarguments. And when controversy is persistent, we find a long history of failed attempts from both sides to produce decisive arguments. So even if I think I’ve just come up with an original argument, I shouldn’t have much confidence that it will be decisive. Chances are, someone who disagrees will readily concoct a counterargument, which many of their tribe—and perhaps even some of mine—will find effective.

Thus I should think that, in cases of persistent, widespread controversy, there’s epistemic parity between the two sides. I should expect to find opponents who have all the same evidence I have—or at least, very similar evidence that’s just as likely as mine to be misleading. I should also expect to find opponents who are just as likely as I am to make a mistake in our assessments of that evidence. So how can I have any confidence that my view is right?

Many theorists think that something like this line of thought ought to drive us to “conciliate” with those who disagree with us: to radically reduce our confidence in our views on matters of controversy. But few of us are willing or able to do so, in part due to the high importance we typically attach to retaining our own views on such matters. My main goal in this chapter is to show there is a genuine problem here. The bulk of the chapter will present the argument for conciliation and develop the argument by defending it against a number of counterarguments. In the end I will briefly describe in outline a strategy for resolving the difficulty.
1.1 Conciliation and Demotion

Epistemic peers on a question are intellectual equals on the matter: peers are equally well-acquainted with the relevant evidence, and peers are equally intellectually capable of evaluating that evidence. Epistemic peers are equally able to prevent intellectual bias from distorting their assessment of evidence; they are equally attentive; they are equally perceptive and equally able to form cogent inferences. In short, peers on P have the same evidence relevant to P and are equal in all attributes which influence how likely they are to correctly evaluate that evidence.

On this definition, it’s highly unlikely for any two people to turn out to be strict epistemic peers. There’s just too much variation in individual cognitive abilities for it to be reasonable to think two people are ever precisely equal in all the relevant ways. Even so, it is often the case that two people have roughly the same abilities and familiarity with the evidence. They would admit that one of them would no doubt turn out to be somewhat superior, were it possible to measure things completely precisely. But they are close enough so neither has any idea who is superior. In such a case, they should count one another as epistemic peers: they take it to be equally likely for either of them to make a mistake in their evaluation of the relevant evidence.¹

A peer disagreement obtains when epistemic peers draw conflicting conclusions from evidence. Perhaps one ends up believing P while the other disbelieves P. Or more generally, one adopts credence α towards P while another adopts β, where $\alpha \neq \beta$. How should rational people respond when they discover they are in such a situation? Two questions are of particular interest. (i) does rationality require the peers to modify their respective attitudes towards P, to substantially reduce or eliminate the extent of the disagreement? Let’s call this first question the Conciliation Question. (ii) does rationality permit or require either peer to stop counting the other person as an epistemic peer, on account of the disagreement? Let’s call this second question the Demotion Question.

Our intuitions in two widely discussed cases pull us strongly towards one set of answers to the Conciliation and Demotion Questions:

[MENTAL MATH] You and I regularly eat lunch together. Regardless of what each of us ordered, we always mentally calculate an equal split of the bill,

¹Similar considerations apply to the requirement that peers have the same evidence. It seems right to say that because people never share precisely the same history of experiences, two people never have precisely the same evidence. Even so, it is often the case that two people can recognize they have evidential parity with respect to some P: their respective evidential situations with respect to P are very similar, and neither has any reason to think his or her own evidence is any more (or less) likely to be misleading than the other’s—at least when it comes to the truth of P. In this case they should count one another as “evidential peers” regarding P. If these people also have similar intellectual abilities, and they can’t tell who is better able to assess their evidence correctly, they should count one another as epistemic peers on P.

²For convenience, when I speak in ways that imply that X is Y’s epistemic peer, I mean that X and Y have strong reasons to count one another as epistemic peers. I’ll discuss what reasons we might have to count someone as a peer in Section 1.6.
rounded to the nearest dollar, after adding tax and a 20% tip. Whenever we arrive at different sums, we recalculate to see who made the mistake. We’ve found, over a long history of cases, that each of us has been wrong an equal number of times. On this occasion, I calculate $45 and you get $43.

[PHOTO FINISH] At a race, we’re standing next to each other as two horses cross the finish line at nearly the same time. I think Horse A won. You think Horse B won. Neither of us thinks the other to be any more or less perceptually reliable.³

In both [MENTAL MATH] and [PHOTO FINISH], it seems obvious to many that, once we discover the disagreement, it is rationally required for both of us to suspend judgment about who is right, and it is not rationally permitted for either of us to cease to count the other as an epistemic peer on the matter. There are minor differences in how theorists explain the rationale behind these intuitions, but they generally appeal to epistemic symmetry. Prior to the disagreement, we count each other as peers, so neither of us thinks one of us in particular has epistemic advantage over the other. We both take each other to have an equal chance of correctly evaluating the relevant evidence. This symmetry is maintained in the course of our examination of the evidence concerning the matter under dispute. Of course, if one of us calculated correctly in [MENTAL MATH], the relevant evidence really does support one of us rather than the other, since one of us evaluated the evidence correctly while the other made a mistake. In this sense, one of us has decisive epistemic advantage over the other. But neither of us may rationally claim to have this epistemic advantage. I can’t properly assume that my result is correct so yours is wrong, and conclude on that basis alone that you must have made an error in evaluating your evidence (nor can you): that would be blatantly question-begging. I also can’t properly appeal to my confidence that my calculation is error-free as reason to think your calculation is likely to be incorrect (nor can you). This is because a crucial feature of mental calculation is that erroneous inferences are often, at the moment of error, phenomenologically indistinguishable from cogent inferences. Mistaken inferences go undetected precisely because one wasn’t able to tell that they are mistakes. So when we ask which of us made a mistake, we find that our introspective confidence in our respective calculations cannot tell us who really calculated correctly. Neither of us can tell who has the epistemic advantage, and neither of us can rationally claim advantage on the basis of the correctness of our calculation.

Once we’ve barred claims to epistemic advantage, we arrive quickly at our intuitions on conciliation and demotion. I’m claiming epistemic advantage for myself if I demote you from peerhood, so demotion is not rationally permitted here. I’m also claiming epistemic advantage for myself if my confidence that I am right is greater than my confidence that you are right. Given that I also have no reason to put greater confidence in you than in myself,

my only rational option is to have equal confidence in both of us, becoming completely agnostic about who is right. And the same goes for you—at least, until we obtain further evidence.

What's striking about this argument is its generality. It assumes (1) that disagreements can obtain only when at least one disputant has made a mistake. It then invokes (2) the epistemic symmetry that obtains for people who count one another as peers. This ensures that neither disputant may claim epistemic advantage on the basis of factors independent of either chain of thought that led to the dispute. It finally appeals to (3) the illegitimacy of question-begging and (4) the phenomenal indistinguishability of correct and mistaken inferences. (3-4) ensure that neither disputant may claim epistemic advantage on the basis of any factors dependent on either chain of thought that led to the dispute. Together, (1-4) leave both disputants with no basis at all for claiming epistemic advantage. We'll examine (1) in Section 1.9. (2) is stipulatively true for all peer disagreements, and (3) is a basic dialectical principle: within a context of disagreement, it's improper to assume one's own result is right and to conclude one's opponent is mistaken solely because his or her result conflicts. (4) seems clearly to apply, as a matter of empirical fact, to a very wide range of our cognitive processes. It holds not only for calculation, but also for perceptual cases like [PHOTO FINISH], as well as induction, inference to the best explanation, memory, and the like. To clarify: (4) does not say that we never have any indication whatsoever that a particular inference may be more or less likely to be mistaken than some other. It allows that we can sense that an inference is questionable, and that we adjust our level of confidence in our conclusions accordingly. Even so, we are often over- or under-confident, and (4) simply says that we can end up holding such improper attitudes without noticing that we're doing anything wrong. The point is that (1-4) appear to hold in a very wide range of circumstances of disagreement. It won't usually matter much what we're disagreeing about.

Despite the generality of this argument, there are important cases where our intuitive judgments on the Demotion and Conciliation Questions go very differently:

[CRAZY MATH] We take one another to be peers on arithmetic, and we're calculating our equal share of a bill, adding tax and a 20% tip and rounding to the nearest dollar. You report getting $43. I report getting $450.

[CAREFUL MATH] We take each other to be peers on arithmetic, and we're calculating our equal share of a bill, adding tax and a 20% tip and rounding to the nearest dollar. You double-check your calculation using pencil and paper, then triple-check it with a calculator, getting the same result each time: $43. I then report getting $45, saying that I also got my result after double- and triple-checking with pencil and paper and calculator.

I'll give (3) additional support in Section 1.4.
In [CRAZY MATH] it seems clear that my crazy result gives you no reason at all to lose any confidence in your calculation, and it also gives you sufficient reason to think that I am at least temporarily impaired and not currently your peer. Many theorists think the same applies in [CAREFUL MATH]. There is disagreement about how best to explain these intuitions. I explain it by noting first that the only difference between [MENTAL MATH] and [CRAZY MATH] is the result which I report, and this difference makes it unlikely for condition (4) to hold. More specifically: in [CRAZY MATH], it’s reasonable for you to be certain that an undetected error would not lead you to conclude your share of the bill is just $43 if it were the case that your share is actually $450. You’re certain that you’d notice an error of such magnitude. Of course, so long as you’re counting me as your peer, you should also be certain that an undetected error would not lead me to conclude my share of the bill is $450 when my share is actually $43. Anyone you should count as a peer would also be certain to notice an error of such magnitude. Given this, the right conclusion for you to draw is that it was a mistake to count me as your peer.

In short, the content of my crazy result undermines condition (4), making it so our disagreement gives you no reason to think it likely that you made an undetected error in your mental calculation. Thus, it is proper for you to retain your original confidence in the correctness of your calculation. This simultaneously gives you sufficient reason to conclude it was a mistake for you to count me as your peer. Put simply, your confidence that you wouldn’t calculate $43 when the right answer is $450 overrides your confidence that you should count me as your peer. Similarly, in [CAREFUL MATH], your careful procedure gives you very high confidence that you would not mistakenly conclude your share is $43 when in fact it is $45, and this confidence overturns your confidence that you should count me as your peer.

So far, we’ve seen how disagreement on P can be relevant either to our views on P or to whether we count one another as peers. If you have sufficiently strong reason to count me as your peer, the fact that we disagree on P can be sufficient reason for you to suspend judgment on P—this is what happens in [MENTAL MATH] and [PHOTO FINISH]. Alternatively, if you have sufficiently strong reason to think that P, the fact that we disagree can be sufficient reason for you to conclude that I shouldn’t be counted as your peer—this is what happens in [CRAZY MATH] and [CAREFUL MATH]. This suggests that, supposing that we disagree on P, whether I should conciliate or demote should be determined by weighing my reasons to be confident about our peerhood against my reasons to be confident about my take on P. There is vigorous debate about when each is appropriate. But on all

7This point is frequently expressed. David Enoch, for instance, says it can only be plausible that I’m rationally required to give equal weight to your view on P if I justifiably take you to be a peer on P, so the crucial question is whether the fact that we disagree on P can undermine that justification (see David Enoch,
accounts, it seems the following will hold:

[DEMOTE OR CONCiliate] In cases of peer disagreement on P, one may retain one's view on P only if one demotes those who disagree from peerhood; one may continue to count those who disagree as peers only if one conciliates on P.

[DEMOTE OR CONCiliate] seems compelling, but there are important cases which seem to violate it, and they are the focus of this chapter. These cases commonly arise in areas prone to controversy, including moral, political, religious and philosophical domains. In these domains, disagreement is persistent and widespread, so that there are many kinds of people on both sides of the disputed issues—including those who not only are of high epistemic virtue, but also are well-informed about the relevant evidence and arguments concerning the matter. For convenience, let's call these situations cases of [CONTROVERSY].

In cases of [CONTROVERSY], it will rarely be reasonable for a person caught up in the dispute to think that everyone who disagrees is epistemically inferior. None of us have perfectly functioning intellects, and we all have ample evidence that we have cognitive limitations and biases. Also, all except the very brightest of us have frequent encounters with people who clearly exceed us in ability, informedness, and sober-mindedness. When P is a case of [CONTROVERSY], the class of people who disagree with me on the matter is large and diverse. I should think it's very likely that many of those whom I count (or would count) as epistemic peers will turn out to disagree with me about P.

Of course, I might refuse to count anyone as my peer on P unless they first agree with me about P. But how could this refusal be reasonable? We've already seen some situations where it can be reasonable to think this way: [CRAZY MATH] and [CAREFUL MATH]. There, I can properly demote you when I find that you disagree with me. But, as I argued earlier, that's because I have very strong reason to think that the tip isn't $450 (as in [CRAZY MATH]), or I have very strong reason to think that my careful procedure is reliable (as in [CAREFUL MATH]). And these reasons outweigh any reason I might have had to count you as my peer. But most (perhaps all) cases of [CONTROVERSY] seem very different from these cases. Genuine real-life disputes on controversial topics are usually complex, with multiple arguments and counter-arguments, encompassing a wide range of considerations that must be weighed against each other. A great deal of judgment is required, and we recognize such judgments to be tricky and prone to error. We very rarely (if ever) find widespread controversy on anything as extreme as the crazy view in [CRAZY MATH]. And none of us can reasonably claim to have a method for resolving questions of [CONTROVERSY] that's as clearly dependable as the method we use in [CAREFUL MATH].

‘Not Just a Truthometer: Taking Oneself Seriously (but not Too Seriously) in Cases of Peer Disagreement’, Mind 119(476) (2010), pp. 972ff. Ernest Sosa puts the point succinctly: “our ability reasonably to downgrade our opponent based on the substance of our disagreement varies depending on the degree of confidence we have in our side of the disagreement, compared with the independently based confidence that we have as to whether the opponent is our inferior on the matter at hand.” (See Sosa, p. 294).
MATH] for resolving questions of simple arithmetic. The upshot is that (4) holds for most (perhaps all) cases of [CONTROVERSY], and we will not have very strong reason to think we made no mistakes in our thinking about \(P \). So it seems *prima facie* unlikely that we'd have sufficient reason to demote every dissenter in cases of [CONTROVERSY].

We're driven, then, to think that there are peers who reject our controversial beliefs, and that we lack sufficient reason to demote them all from peerhood. Then according to [DEMOTE OR CONCILATE], we are rationally required to conciliate, suspending judgment about who is right about these controversial beliefs. But a very wide range of our beliefs are cases of [CONTROVERSY], including many beliefs which hold the highest importance for us (e.g., about what sort of life is worth living). To suspend judgment on all these beliefs is a rather extreme skepticism, which is highly unattractive and implausible.

That's our puzzle. It seems incorrect to say that cases of [CONTROVERSY] work like our first category of disagreements ([MENTAL MATH] and [PHOTO FINISH]), where we suspend judgment on \(P \) and continue to count one another as peers. It also seems incorrect to say that they work like our second category of disagreements ([CRAZY MATH] and [CAREFUL MATH]), where we retain our views on \(P \) and demote others because they disagree. Our intuition, I take it, is that in [CONTROVERSY] rationality permits us to retain our views in the face of disagreement, but rationality does *not* permit us to demote our peers on the basis of the disagreement. Cases of [CONTROVERSY] appear to be exceptions to [DEMOTE OR CONCILATE].

The crucial question is whether and how these intuitions cohere with our understanding of the first two categories of disagreement. What we want is a theory which explains how we may coherently reject *both* conciliation and demotion in cases of [CONTROVERSY], while also retaining our intuitions about the other cases. In summary, here are the intuitions whose preservation I take to be a condition of adequacy for a theory of disagreement:

<table>
<thead>
<tr>
<th>Case</th>
<th>Conciliation</th>
<th>Demotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MENTAL MATH], [PHOTO FINISH]</td>
<td>Required</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>[CRAZY MATH], [CAREFUL MATH]</td>
<td>Not Permitted</td>
<td>Required</td>
</tr>
<tr>
<td>[CONTROVERSY]</td>
<td>Not Required</td>
<td>Not Permitted</td>
</tr>
</tbody>
</table>

In the bulk of what follows, I will consider and reject various strategies for resolving the puzzle. In Section 1.2 I address some direct attacks on [DEMOTE OR CONCILATE]. In Sections 1.3-1.6 I turn to attempts to make it plausible to think it's actually permissible to demote all those who disagree with us on matters of [CONTROVERSY]. In Section 1.9 I discuss views which resolve the puzzle by appealing to epistemic permissiveness. I conclude by suggesting in outline a strategy for resolving the puzzle.

1.2 The Significance of Other Inquirers

[DEMOTE OR CONCILATE] seems most plausible in cases of one-on-one disagreement, where the only relevant inquirers are two people who count one another as peers. It's
difficult to think of any clear counterexamples to the principle which involve disagreements between just two peers. But this changes when we introduce additional inquirers.

Consider this variant of [MENTAL MATH]:

[SAVANT MATH] You and I have a long history of check-splitting in which we’re equally likely to make errors in our calculations. We are now splitting the check three ways with SAVANT, whom we all recognize as an arithmetical genius who has a track record of correctly splitting checks 99.9% of the time. We each independently calculate; when we compare results we find that I got $45, you got $43, and SAVANT got $43.

This case circumvents [DEMOTE OR CONCILIATE]. First off, it’s clear (intuitively) that you should not conciliate in this case, since your result is the same as SAVANT’s. But it’s also clear that you should not demote me, even though you’re extremely confident that I made a mistake on this occasion. As stipulated, we have a long history where we made an equal number of mental math mistakes. Now append to that track record the fact that, on this one occasion, I made a mistake but you did not. This leaves you with no good reason to think you’re significantly more reliable than I am. Most likely, our chances of error for this sort of calculation are roughly equal, but you just happened to be luckier than I was in avoiding error on this occasion. So you should not demote me.

Of course, if I’m at all reasonable, I should defer to you and SAVANT. So this should not be a case of persistent disagreement. Even so, you don’t need to wait to see me defer before you decide not to conciliate or demote me. So [SAVANT MATH] shows that adding an epistemic superior to a disagreement can circumvent [DEMOTE OR CONCILIATE]. But it’s hard to see how epistemic superiors could be exploited to resolve our puzzle for cases of [CONTROVERSY]. Of course, unless I’m in the rare situation of having good reason to think myself exceptionally well-qualified to assess some controversial P, I should expect many of my epistemic superiors to disagree with me on P. But this doesn’t necessarily mean I should immediately switch sides, since I should also expect to find epistemic superiors among those who agree with me on P. In cases of [CONTROVERSY] it seems most reasonable to expect to find epistemic superiors on both sides of the issue.

But recognition of this fact can only lead to suspension of judgment on P. Suppose I think I should adopt for myself the view of the most epistemically capable person, whatever that might be. I expect there will be people of very high epistemic virtue on both sides, but do I have any idea which side can claim the best thinkers? Most likely, I don’t, so this line of thought leaves me with no reason for me to take one side over the other, and I should still suspend judgment about who is right. But suppose I thought I had reason to conclude that those with the highest levels of epistemic virtue would agree with me on P. That would give me reason not to conciliate with a disagreeing peer, but in actual cases of controversy, it seems

8It should be easy to see how exactly this case circumvents [DEMOTE OR CONCILIATE]: SAVANT is a source of conclusive evidence that neither you nor I had access to while we were doing our own calculations.

9Or, perhaps, the view espoused by the highest number of highly capable inquirers.
I should expect to find peers who disagree with me about that. In other words, when there is controversy about P, there is also usually controversy about whether the most qualified thinkers accept P. If so, then we’ve simply pushed the problem up a level: instead of controversy just about P, there’s also controversy about what the most epistemically capable thinkers believe. Whatever pressure to conciliate on P seems straightforwardly to apply to this new point of disagreement, leaving us no closer to resolving the puzzle.

We’ll soon examine a counterexample to [DEMOTE OR CONCiliate]. But first, it will help to introduce some terminology. We’re driven to demote or conciliate when we recognize that we may have made an error somewhere in our thinking, and there are three different types of error that are relevant to cases of disagreement. The first I will call evidence assessment errors. This type of error is very straightforward. Suppose we have a body of total evidence E relevant to P. Inquirers, being fallible, may make undetected errors in their assessment of E. This sort of mistake is an evidence assessment error.¹⁰

Inquirers have some sense of their chances of making an evidence assessment error. One’s own past performance can provide at least a rough estimate for how likely it is for one to make an evidence assessment error on some given P. But we sometimes misjudge ourselves. As an example: I might seriously underestimate my chance of making a mistake, perhaps because I failed to take into proper account how little sleep I got last night. I will call this second type of error a self assessment error.

I will call the third type of error peer assessment errors. To count me as your peer on P is, roughly speaking, to think that we have the same evidence and also have equal chances of making an evidence assessment error. You’ve made a peer assessment error when you’ve counted me as a peer, but our chances of making a mistake were not close to equal—I am actually significantly more (or less) likely than you are at making an evidence assessment error.

This lingo lets us neatly restate our intuitions in [SAVANT MATH]. First, I (but not you nor SAVANT) made an evidence assessment error. Second, neither you nor I made self-assessment errors. Third, neither you nor I made peer assessment errors in counting one another as peers. Thus, you should neither conciliate nor demote me.

Here’s a counterexample to [DEMOTE OR CONCiliate]:

¹⁰It is important to note that an evidence assessment error is an error in assessing the evidence for P. Suppose P is true, but E is highly misleading, so properly assessing it would lead one to conclude ¬P. Someone who made no evidence assessment errors would form an incorrect conclusion about P. And someone who examined E and somehow ended up believing P must have made an evidence assessment error. Evidence assessment errors do not track whether you end up with a true or false belief, but rather whether you responded to the evidence correctly. This distinction will be important in Section 1.9, when we talk about epistemic permissiveness.

By contrast, I’ve defined self assessment and peer assessment errors so that they depend only on whether you end up with a true or false belief. Suppose you had misleading evidence about your own reliability on P. Then if you properly assessed that evidence, you'd end up making a self assessment error. We could define “P-assessment error” as a parallel concept that depends only on whether someone got P right, but I won’t have much use for the term in our discussion.
[PEER MAJORITY] You and I are part of a group of 100 inquirers examining the same body of evidence E relevant to P. We each independently arrive at our respective conclusions on P, and we all count one another as peers on P: each of us thinks we each have an equal 10% chance of making a mistake assessing E. We’ve finished our evaluations of E and we share our results. We discover a majority of opinion: you and 89 others concluded P, and I and 9 others concluded ¬P.

In this case it seems (intuitively) most reasonable for you to be confident that you didn’t make evidence, self, or peer-assessment errors. You 1) concluded P given E, 2) took yourself to have a 10% chance of misjudging the evidence E, and 3) took all the other inquirers to have the same 10% chance of error. Now if P were, in fact, the correct conclusion given the evidence, then given (2-3) you’d expect roughly 90 of you to correctly conclude P, and roughly 10 of you to incorrectly conclude otherwise. Since this is exactly what you do see, that confirms (2-3). The upshot is that, in this case, you should retain high confidence in P, and you should also be confident that you were right to think that you and I and the other 98 inquirers all had a 10% chance of making a mistake in evaluating evidence E. This is a counterexample to [DEMOTE OR CONCiliate]: you should not reduce your confidence in P, but you also lack reason to cease counting me as your peer.

But as with [SAVANT MATH], it is difficult to see how the structure of [PEER MAJORITY] may be exploited to resolve our puzzle for cases of [CONTROVERSY]. As before, it does not seem that [PEER MAJORITY] describes a case of persistent controversy. A reasonable person who finds himself among the 10 who concluded ¬P should quickly reverse his conclusion. Like everyone else, he went in expecting a 10% chance of making a evidence evaluation error. The observed 90% consensus among the independent inquirers gives him sufficient reason to conclude that, on this occasion, he made an error. If he didn’t make an error, then 90 of his peers must have independently gone wrong, and that’s just too unlikely.

But that’s not all. The key difficulty with controversial matters is a lack of consensus among large numbers of people who appear in many respects to be (roughly) epistemic peers. But in [PEER MAJORITY] it is precisely the 90% consensus which confirms both your confidence in the peerhood of all the inquirers and your confidence that you correctly assessed the evidence on P. Consider what happens when we lack consensus:

[PEER CONTROVERSY] You and I are part of a group of 100 inquirers examining the same body of evidence E relevant to P. We each independently arrive at our respective conclusions on P, and we all count one another as peers on P, estimating each of us has an equal 10% chance of making a mistake assessing E. Upon sharing our results, we find that you and 49 others concluded P, while I and 49 others concluded ¬P.

Here it is natural to think that the observed 50/50 split of opinion is strong evidence that the inquirers in our group have, on average, about a 50% chance of making an evidence as-
assessment error. But does this give you reason to think your chance of evidence assessment error is 50%?

One option is to say no: you may think that the poor performance of your fellow inquirers is irrelevant to your own chance of error, which you continue to estimate at 10%. This allows you to retain your belief about P, but you must also conclude that you made a peer assessment error. The other inquirers must not have been your peers after all: their average 50% error rate is much higher than your 10%. We could discuss what conditions would render this inference rational (you need some reason to think you're likely to have the lower error rate), but the important thing to observe is that [DEMOTE OR CONCILIATE] continues to apply in this case. You avoid conciliation by demoting the other peers.

Another option is to say yes: you may think that the poor performance of the group is relevant to your assessment of your own performance. In this case, you conclude that you made a self assessment error. So you think your chance of making an evidence assessment error wasn't actually 10%—at least not on this occasion. It's natural to think that, since you lack reason to think your abilities to be any better or worse than the other inquirers, you should take your own chance of error to be equal to that of the group average: 50%. And given a 50% chance of error, you should become agnostic about whether P or ¬P is the correct conclusion to draw from the evidence: you've conciliated. But by taking this option, you retain the view that the other inquirers in the group are your peers. You reject the suggestion that you made a peer assessment error, so you don't demote. Thus, [DEMOTE OR CONCILIATE] continues to apply in this case.

This shows that [DEMOTE OR CONCILIATE] applies in [PEER CONTROVERSY] whether or not we think the controversy is relevant to our estimates of our own chances of making an evidence assessment error. What's important is that we think the observed split in opinion is a reliable measure of the average chance of error among the inquirers. Of course in the cases of [CONTROVERSY] which are the focus of this chapter, the observed split in opinion will not generally be a reliable indicator of the average chance of error of the disputants. This is mainly because actual inquirers do not form their opinions independently of one another. Any specific ratio of opinion will depend not only on people's

11 More technically: 50% is the \textit{maximum likelihood estimate} for the average of the individual chances of error for each inquirer in the group. Of all possible values of the average chance of error, 50% is the value which maximizes the probability that you'd observe a 50/50 split.

12 Note that [MENTAL MATH], [PHOTO FINISH], [CRAZY MATH] and [CAREFUL MATH] can each be seen as special cases of [PEER CONTROVERSY]: in each case we get a 50/50 split of opinion, except with 2 independent inquirers rather than 100. In [CRAZY MATH] and [CAREFUL MATH] our intuitions go with option one: we think our poor \textit{average} performance (i.e., at most one of us got the answer right) is irrelevant to assessment of our own chance of error. In [MENTAL MATH] and [PHOTO FINISH] our intuitions go with option two: we think our poor average performance \textit{is} relevant to our assessment of our own chance of error. What's most important for our purposes is that [DEMOTE OR CONCILIATE] holds in all these cases.

13 As the number of independent inquirers increase, it becomes increasingly implausible to think that the average chance of error is much different than the observed split in opinion.
error rate, but also the social patterns of influence that exist among the inquirers. In fact, with controversial subjects it’s likely that differences in our family and social or educational background will strongly predict the content of our views. The epistemological considerations here are too complex for us to scrutinize in great detail, but prima facie it does not seem that exploring these complexities will get us any closer to resolving our central puzzle. Consider again the dispute about a controversial P between you and a peer selected from the opposing side. Grant that neither you nor your peer’s opinions on P were formed completely independently of influence from your respective social groups. The natural question to raise here is which social group’s influence is more likely to be a distorting influence on one’s assessment of the evidence. And even if you claim to have reason to think your own social group is less likely to be a distorting influence, that claim would likely be subject to controversy. So it seems this line of thought, combined with the arguments for conciliation, would lead us once again to suspension of judgment.

All the same, it remains important to keep in mind that real-life controversies obtain between groups of people with a range of intellectual abilities, while most philosophical discussions of disagreement focus on cases of one-on-one disagreements between peers. [PEER MAJORITY] shows that it’s a mistake to simple-mindedly apply to group controversies the results we get from thinking about one-on-one peer disagreements. If I found myself in a 90% majority, it could be a mistake for me to conciliate with my disagreeing peers in the 10% minority. It can be reasonable to explain their conflicting conclusions as simply bad luck: we all had a 10% chance of getting it wrong, and they’re the unlucky 10%.

I’ve argued in this section that real-life controversies look more like [PEER CONTROVERSY] than [PEER MAJORITY]. There’s just too much persistent disagreement for me to reasonably think that my disagreeing peers just had bad luck. Thus, [DEMOTE OR CONCILIATE] continues to apply to real-life controversies: either I maintain high confidence that I did not make an evidence assessment error, or I downgrade my self-assessment towards the observed average rate of error. In the first case, I am demoting: I am claiming that my own chance of error is much lower than that of my (former) peers, who display a much higher average rate of error than I originally attributed to them.

1.3 Demotion Re-examined

Can we explain away the intuition that demotion is not permitted in cases of [CONTROVERSY]? If we can show there’s really no problem with seeing as our epistemic inferiors those who disagree with us on a matter of [CONTROVERSY], then we’ll be able to retain our controversial views with undiminished confidence while upholding [DEMOTE OR CONCILIATE]. We will have evaded the problem by biting the Demotion Bullet. I will argue in the next few sections that this strategy is untenable.

I argued earlier that it’s implausible for most people to think everyone who disagrees with them about P is intellectually inferior. When P is a matter of [CONTROVERSY],
there will be many—thousands, hundreds of thousands, or possibly hundreds of millions—who reject one’s view on P. It’s a rare soul who can reasonably claim to be intellectually superior to all these people, though I’m happy to concede the rather unsurprising point that, if you’re one of the few who have good reason to think yourself among the most gifted intellects in the world, you’re not likely to run into many challenges to your beliefs due to peer disagreement.14 But if we more typical mortals are to reasonably demote everyone who disagrees with us on some point of \textsc{controversy}, we won’t be able to appeal to the strength of our intellectual ability and sober-mindedness.

It seems more promising for us to appeal to factors related to P itself. That might give us reason to think we’re more likely to get P itself right without having to claim that we are better intellectual agents, on the whole. On the strategy we’re considering, we accept [DEMOTE OR CONCILIATE], so we must demote those who disagree with us on P if we are to retain our views on P. But we’re being more modest: we’re only demoting them \textit{with respect to} P; we don’t need to claim any superiority with respect to questions unrelated to P.

To evaluate whether this strategy is viable, we’ll need to re-examine the argument for conciliation to better understand the conditions under which it’s reasonable to demote someone with respect to some P. Then we’ll examine an argument, due to Adam Elga, which tries to show how it can be reasonable to demote those who disagree with us on some controversial P. He says I should reduce my assessment of my peer’s reliability on P when I see she is mistaken on many Qi related to P. I will argue that this fails because our disagreements on the Qi should also lead me to lower my assessment of my own reliability on P. But first, let’s discuss demotion more carefully.

\subsection*{1.4 The Demotion Test}

To review, our argument for conciliation turns on four considerations: (1) the assumption that disagreements can obtain only when at least one of us has made a mistake, (2) the epistemic symmetry that obtains for people who count one another as peers, (3) the illegitimacy of question-begging, and (4) the phenomenal indistinguishability of correct and mistaken inferences. Given (1), we can be certain that \textit{someone} has made an evidence assessment error in a case of disagreement; to retain confidence that we’re right, we must claim epistemic advantage: we must think it’s more likely that the other person made a mistake. (2) ensures that we cannot rationally claim epistemic advantage on the basis of factors \textit{independent} of either chain of thought that led to the dispute. (3-4) ensure that we cannot rationally claim epistemic advantage on the basis of any factors \textit{dependent} on either chain of thought that led to the dispute. (2-4) leave us with no rational basis for claiming epistemic advantage. Combined with (1), this entails that neither of us can retain confidence that we

14But see Footnote 54, where I argue that one should still conciliate with one’s epistemic inferiors, just to a lesser degree.
correctly assessed the evidence about \(P \).

This argument notably does not explicitly rely on a general principle like:

\[
\text{[INDEPENDENCE]: In evaluating the epistemic credentials of another’s expressed belief about} \ P, \ \text{in order to determine how (or whether) to modify my own belief about} \ P, \ \text{I should do so in a way that doesn’t rely on the reasoning behind my initial belief about} \ P.\]

The commonly invoked motivation for adopting this principle is to prevent someone from demoting a peer in a question-begging way. As David Christensen puts it:

\[
\text{[INDEPENDENCE] attempts to capture what would be wrong with a} \ P\text{-believer saying, e.g., “Well, so-and-so disagrees with me about} \ P. \ \text{But since} \ P \ \text{is true, she’s wrong about} \ P. \ \text{So however reliable she may generally be, I needn’t take her disagreement about} \ P \ \text{as any reason at all to question my belief.”}\]

While I agree that begging the question this way is a bad practice, it seems we can explain why it’s bad without appeal to a principle like [INDEPENDENCE]. Thomas Kelly suggests, plausibly, that encountering testimony that you believe \(\neg P \) can undermine my justification to believe \(P \). And once I’ve lost justification to believe \(P \), it’s improper for me to rely on \(P \) as my basis for disregarding or demoting you. This rules out question-begging without relying on [INDEPENDENCE].

I think what’s really driving the argument for conciliation is ultimately (4). The crucial problem is our fallibility: the fact that all of us frequently make mistakes in our thinking without noticing them immediately. In fact, in cases of tricky and subtle reasoning, we can make the same mistake again and again, even as we check and recheck our work. Once I discover that you disagree with me about \(P \), it becomes certain for me that somebody made an evidence assessment error; I should now assess who most likely made the mistake.

16Ibid., p. 2.
18The first example that comes to mind: When doing physics problem sets in college, I’d often end up with a sign error somewhere in my calculation: I’d get the right answer except it would be negative when it should be positive, or vice-versa. Somewhere along the way, I must have misplaced a negative sign. I’d check the math repeatedly, but I wouldn’t be able to find out where exactly I made the mistake. Pressed for time, I’d give up: I’d just note the error and cite the general physical considerations that show the sign should be flipped. It turns out that this kind of mistake is extremely common: so common that our graders often wouldn’t penalize us for such errors.
19I discuss in Section 1.9 the possibility that disagreements may arise without anyone making a mistake, even under conditions of epistemic parity.
20Christensen is fairly explicit that this is precisely what’s at the bottom of his views on disagreement. He says the “motivating insight behind Conciliationism” is “that we must take account of the possibility that we’ve made cognitive mistakes, and that the beliefs of others serve as checks on our cognition.” See Christensen, ‘Disagreement, Question-Begging and Epistemic Self-Criticism’, p. 3.
long as (4) applies to the line of thought that led to my opinion on P, it’s unreasonable for me to think there’s a negligible chance I made the error. But to beg the question (to assume I am right and dismiss, for that reason alone, the view of a disagreeing peer) is to treat that chance as negligible. So I shouldn’t beg the question.

Of course sometimes, I didn’t make an evidence assessment error. More importantly: there are cases where we disagree because you made an evidence assessment error. In some of these cases, I made a peer assessment error: I shouldn’t have counted you as my peer to begin with. Suppose that it’s often unreasonable for me to think there’s a negligible chance that I made a peer assessment error. So, if accepting [INDEPENDENCE] amounts to treating that chance as negligible, then I shouldn’t accept [INDEPENDENCE]. If this line of thought is correct, then parallel arguments rule out both begging the question and accepting [INDEPENDENCE]. Both practices are to be rejected because they can prevent us from discovering our mistakes.

Why might we think that accepting [INDEPENDENCE] amounts to treating as negligible the chance that I made a peer assessment error? Consider cases like [CRAZY MATH] and [CAREFUL MATH], which clearly involve peer assessment errors. In these cases, it seems natural to say that your calculation of the check justifies a very high degree of confidence that my answer is incorrect, and that this confidence is necessary to justify concluding that I’m not your peer. If this is right, these are cases where it’s necessary to rely on one’s own reasoning on P in order to demote someone whom one is counting as a peer on P. In such cases, someone who accepted [INDEPENDENCE], which bars all appeals to one’s own reasoning on P, would be incapable of demoting anyone he or she has started to count as a peer on P. This is reason to reject [INDEPENDENCE].

In defense of [INDEPENDENCE], Christensen argues that it’s not necessary, even in these cases, to rely on your reasoning about P to demote me. In [CAREFUL MATH], for instance, consider what it’s reasonable for you to think in advance of starting your careful calculation of your share of the check. At this point, you can already anticipate that it’s very unlikely for two competent people employing the careful method to arrive at different results. If a disagreement arises, it must be because someone didn’t use the careful method, someone is joking or lying about their result, or someone is suffering from some sort of cognitive malfunction due to exhaustion, depression, psychosis, etc. But with respect to these possibilities, there is a real asymmetry in your evidence. You have personal information that can give you confidence that you are using a careful method, that you are not joking or lying, and that you are not exhausted, drunk, etc. But you won’t have nearly as strong reason to think that I am carefully engaged in solving the problem, and that I’m not somehow cognitively impaired. You are, therefore, prepared in advance to demote me if you

21 Sometimes, my mistake was thinking you disagreed with me at all—this happens in what we call “verbal disagreements”.

find that we disagree. Christensen notes that this entire line of reasoning is independent of
the reasoning you employed to arrive at your belief about your share of the check, because
it doesn't rely on the results of your calculations, or on your rational confidence in those re-

sults. Rather, it relies on your rational confidence in the very high reliability of the reasoning method you are employing. And you already had this confidence prior to calculating.23

I'm inclined to think that Christensen is right on this point, so he's able to address
the peerhood mistakes in [CRAZY MATH] and [CAREFUL MATH] without violating
[INDEPENDENCE]. But even so, I don't think defenders of conciliation need to be so
concerned to defend [INDEPENDENCE]. All theorists must account for cases where it
seems intuitively obvious that someone should be demoted, and where it also seems that
the reason for demotion is the mere fact that the person disagrees. But if I'm right, and the
basic motivation for conciliation comes from our goal of finding our cognitive mistakes,
then these cases will all be situations where we have high rational confidence either that
we didn't make a cognitive error in our reasoning about \(P \) (as in [CAREFUL MATH]),
or that our opponent's answer is wrong (as in [CRAZY MATH]). What's crucial here is a
comparison between our reasons for concluding \(P \) with our reasons for counting the other
party as our peer. We should conciliate when it's more likely that we made the mistake in
our reasoning about \(P \). We should demote when it's more likely that we made the mistake
in counting the other party as our peer.

With this idea in mind, I propose the following, which I'll call the Demotion Test. First
consider the reasons you had for counting me as your peer on \(P \), prior to discovering that
I disagree with you about \(P \), and estimate your degree of confidence that you should count
me as your peer. Next, imagine that I am actually right about \(P \), yet you still arrived at
your conflicting (but now assumed to be mistaken) conclusion about \(P \). Consider the sorts
of mistakes you'd have to make in your chain of reasoning to lead you astray. Finally, ask
yourself how confident you actually are that you didn't make those kinds of mistakes in your
reasoning about \(P \). You should demote me simply because I disagree with you on \(P \) if and
only if your rational confidence that you can rule out all of these possible mistakes is higher
than your rational confidence that you should count me as your peer on \(P \). I will say that
you pass the Demotion Test iff it tells you to demote me, and that you fail the Test iff it
tells you not to demote me. On this definition, you retain your view on \(P \) if you "pass" the
test, and you must conciliate if you "fail" it.

Given Christensen's arguments, it may very well turn out that you can always execute
the Demotion Test without relying on any of your reasoning about \(P \) itself. If so, then this
test is consistent with [INDEPENDENCE]. So much the better for [INDEPENDENCE].
But there's no loss for conciliationism if there turn out to be problem cases where you may
execute the Demotion Test only by relying on your reasoning about \(P \). And in any case, it
seems the Demotion Test fits better with our actual practice, and it seems easier to apply
when it comes to disagreements concerning matters of [CONTROVERSY]. To evaluate
someone's epistemic credentials with respect to some \(P \) according to [INDEPENDENCE],

23Christensen, 'Disagreement, Question-Begging and Epistemic Self-Criticism', p. 9-11.
I must set aside or bracket my own reasoning on P. This is relatively easy to do for simple cases of disagreement about math or perception. But it’s often not easy to bracket one’s reasoning about matters of [CONTROVERSY], which involve complex combinations of considerations which are often difficult to tease apart from our overall set of beliefs. A significant advantage of the Demotion Test is that it doesn’t require any such bracketing: applying it requires only that I think about my reasons for thinking you’re my peer and my reasons for thinking P. This helps to simplify our thinking about cases of [CONTROVERSY].

The Demotion Test delivers the right results in [MENTAL MATH], [PHOTO FINISH], [CRAZY MATH], and [CAREFUL MATH]. In these cases, you start out with a fairly high rational confidence that you should count me as your peer. Then you learn of the disagreement. Keeping that in mind, let’s look at each case. Suppose your share of the check is really 45 in [MENTAL MATH]. A simple math error would lead you to think it’s 43. Assuming you’re doing calculations quickly in your head, you don’t have high rational confidence that you wouldn’t make such an error. Your confidence that you should count me as your peer is much higher, so you fail the test in [MENTAL MATH] and you cannot demote me just because I disagree with you. If Horse A actually won by a nose, then a simple perceptual error could lead you to think Horse B won. You don’t have high rational confidence that you’re immune to such errors, so again you fail the test in [PHOTO FINISH], and you cannot demote me just because I disagree with you. If your share of the check is really $450, you’d have to be seriously malfunctioning to think it’s only $45. But you have very high rational confidence that you’re not seriously malfunctioning, so you pass the test in [CRAZY MATH], and you should demote me. Finally: if your actual share of the check is $45, then you’d get a different answer only if you aren’t using a careful calculation method, or if you’re seriously malfunctioning. But you do have very high rational confidence that you used a careful calculation method, and that you’re not seriously malfunctioning. So you pass the test in [CAREFUL MATH], and you should demote me just because I disagree with you.

The test also handles a tricky case due to David Christensen, where one has very high rational confidence in P, yet is still (intuitively) required to conciliate when encountering a disagreeing peer:

24 For more discussion of the difficulty of bracketing, see Kelly, ‘Disagreement and the Burdens of Judgment’, pp. 39ff. Kelly considers a case where one disbelieves in God because “given everything else that one takes to be true about reality, one judges that it’s extremely improbable that any such being exists.” Here it can seem particularly difficult to bracket. Of course, I’m not claiming that the Demotion Test is trivially easy to apply: it requires some counterfactual thinking, and that can get tricky at times. But I contend that the sort of counterfactual thinking employed in the Demotion Test is quite commonplace—when thinking about a view I disagree with, it’s very natural for me to start imagining how things would be if I were wrong. By comparison, bracketing is a relatively unnatural operation.

Another advantage of the Demotion Test is that it neatly avoids a barrage of criticisms of independence constraints, posed by David Enoch in [Enoch, pp. 974ff]. My contention is that a strong argument for conciliation remains even without appealing to [INDEPENDENCE]. But I will not interact with Enoch’s arguments in detail here.
[LOTTERY TICKET] Consider a million-ticket lottery in which each ticket is printed with three six-digit numbers that, when added, yield the seven-digit number that is entered into the lottery. My friend has a ticket, and of course I am extremely confident that her ticket did not win. But just to pass the time, I add the numbers in my head and check the result against the winning number printed in the paper. No match, so I remain extremely confident that she hasn’t won. But then she adds the figures in her head, checks the result against the paper, and announces that she’s won.

Assuming that my friend and I are equally reliable at adding numbers and comparing the result with what’s in the paper, it seems (intuitively) that I should become much less confident that my friend didn’t win the lottery, and this is true despite my starting out with very high rational confidence that she didn’t win. This case shows it’s incorrect to say simply that you may rationally demote a disagreeing peer whenever you have very high rational confidence in P. But the Demotion Test handles the case nicely. Suppose that my friend really did win the lottery, so the sum of the three numbers of her ticket actually matches the winning number in the paper. What sorts of mistakes in my own chain of reasoning could lead me to conclude that she didn’t win? Well, I could have added the three numbers incorrectly, finding a sum that doesn’t match what’s in the paper. But this is just the sort of error I’m likely not to notice. So I fail the Demotion Test; I can’t demote my friend simply because we disagree, and the argument for conciliation goes through, just as required by our intuitions.

Here’s another tricky case that helps to clarify how the Demotion Test works. Suppose in a variant of [CRAZY MATH], I say P: that your share is $450, but then I add Q: “you’re currently experiencing a psychotic episode, undetectable to you, that’s giving you a delusion that your share is $43.” Intuitively, my adding Q to my crazy P gives you no reason not to demote me. Does the Demotion Test deliver this result?

The Test tells you to imagine that P ∧ Q is true. In that case, you’re mistakenly concluding your share is $43 when it’s actually $450. We said this is possible only if you’re severely malfunctioning, but Q says you are malfunctioning. So your basic mistake is to think you are undeluded when you are, in fact, severely (and undetectably) deluded.

The Demotion Test then asks you to consider how confident you actually are that you would not make that mistake. Here we’re no longer imagining you’re severely deluded: we’re asking how confident you are, in the ordinary situation, that you’re not mistakenly thinking you’re undeluded when in fact you’re severely (and undetectably) deluded. And now it seems that you can, with high rational confidence, rule out the chance that you’re making that mistake. For it’s a short path to radical skepticism for any epistemology which does not grant us general entitlement to trust that we’re not seriously undetectably deluded. We should, of course, allow that this trust can be defeated if we’re given positive reason to think we’re deluded. But you wouldn’t expect someone you’re counting as a peer to be...

able to give you positive reason to think you’re suffering a delusion undetectable to yourself. That sort of delusion, after all, would be just as undetectable to anyone who’s merely your peer on the matter. The upshot is: you should demote your peer simply because he disagrees with you on \(P \land Q \), and this is consistent with our intuitions for the case.\(^{26}\)

1.5 Demotion via Disagreement Surplus

There’s more that I’ll want to say about demotion and peerhood, but I’ve said enough so far to address a strategy due to Adam Elga for demoting disagreeing peers on controversial topics. Elga begins with the thought that anyone who disagrees with me about some controversial \(P \) will be very likely to disagree with me about numerous other controversial \(Q_i \) related to \(P \). This is because “in messy real-world cases, the disputed issues are tangled in clusters of controversy.”\(^{27}\) Elga then says that these additional disagreements give me sufficient reason to conclude that such people are not my peers on \(P \). Suppose, for instance, that Ann disagrees with Beth on the permissibility of abortion. Then Ann is also likely to disagree with Beth on a host of surrounding moral issues. And: “by Ann’s lights Beth has reached wrong conclusions about most of these closely related questions. As a result, even setting aside her own reasoning about the abortion claim, Ann thinks it unlikely that Beth would be right in case the two of them disagree about abortion.”\(^{28}\)

Elga’s idea easily generalizes to issues other than abortion. It threatens to show that I can usually demote those who disagree with me about some controversial \(P \). For it is surely true that putative peers who disagree with me on \(P \) will very likely also disagree with me on controversial matters close to \(P \). And if Elga is right that these other disagreements give me sufficient reason to demote someone from peerhood on \(P \), then it starts to seem likely that I’ll always have sufficient reason to demote putative peers who disagree with me on \(P \).

As we’ll soon see, Elga’s proposal contains an important insight. But it is unsuccessful. First, some observations that Elga does not dispute. Neither view on abortion in Ann and Beth’s dispute seems analogous to my claim in \([\text{CRAZY MATH}]\) that your share of the check is \$450. Given the complexity of the relevant arguments, neither Ann nor Beth

\(^{26}\)In general, the Demotion Test handles cases of disagreement with “conspiracy theorists” in this way: by insisting that we can rule out the possibility that we are seriously undetectably deluded. Suppose for instance that \(E \) is your physical and astronomical evidence and \(P \) is “The sun is larger than the moon.” (I take this example from Kelly, ‘Peer Disagreement and Higher-Order Evidence’, p. 159.) Suppose I reject \(P \). It seems intuitively clear that this is a case where you should not conciliate; you should demote me simply on the substance of the disagreement. And that’s the result the Demotion Test delivers. To apply the Demotion Test here, you must imagine that the sun is not larger than the moon, in which case most all your physical and astronomical theories must be in fact false, yet your available evidence somehow permits those theories to “save the appearances” so that neither you nor the experts notice their falsehood. Any epistemology that avoids global skepticism would allow you to have extremely high rational confidence that it’s appropriate to rule out this sort of large-scale, systematic error. So you pass the Demotion Test, and you should demote me.

\(^{27}\)Elga, ‘Reflection and Disagreement’, p. 493.

\(^{28}\)Ibid.
may demote the other with respect to abortion simply because they disagree about it. The issue just isn’t nearly obvious enough—for Ann, or anyone else. Similarly, it does not seem reasonable for Ann to have extremely high confidence in the reliability of whatever procedure she used to arrive at her view on abortion. We don’t have a method of deciding tricky moral issues (like abortion) that we can rationally take to be as dependable as the method of checking arithmetic that we have in [CAREFUL MATH].

Of course, we should grant that Ann (and Beth) may start out with “moral certainty” that she’s right about abortion—her confidence that she’s right may be sufficiently high to justify relying on her views to make grave choices that significantly affect her own life and the lives of others. But it’s hard to see how Ann (or Beth) could pass the Demotion Test with respect to abortion, even if she has moral certainty that she’s right about the matter. It’s difficult to discuss this in substantial depth without getting sidetracked into the details of the abortion argument. But it will help to have a rough characterization of the reasoning that enters into such issues. First, we can divide the relevant considerations into moral facts (e.g., the conditions under which killing is wrong) and non-moral facts (e.g., whether humans have souls). And we may understand our moral reasoning as an application of rational analysis to our pre-theoretical moral intuitions. Now let Ann suppose that Beth is right about abortion. Then there are many types of errors that could have resulted in Ann going wrong on the issue: perhaps she misjudged a non-moral fact. Or perhaps she made a procedural error in her thinking about the moral issues. Or perhaps she started out with misleading pre-theoretical intuitions. But all of these are precisely the sort of mistakes people are likely to make without realizing it (especially the latter two). Ann can’t assume with high confidence that she’d notice these sorts of mistakes. So, assuming Ann has even moderate reason to take Beth as a peer on abortion, Ann most likely will fail the Demotion Test.

Elga proposes that Ann set aside her views on abortion and look instead at a cluster of issues related to abortion. Because Ann thinks Beth is mistaken about most or all of these issues, she is justified in demoting Beth. What Elga doesn’t examine, however, is Ann’s confidence in these related issues. Let’s start by forming the conjunction $Q_1 \land Q_2 \land \ldots \land Q_n$, where each Q_i is one of the propositions related to abortion on which Beth disagrees with Ann. It’s not likely that Ann’s confidence in this conjunction would permit her to demote Beth. First, her confidence in the conjunction can be no greater than her confidence in the individual Q_i she’s least confident about. But among the Q_i should be questions just as tricky to resolve as the question of abortion itself (e.g., whether human beings have souls). So her confidence in the conjunction is unlikely to be any greater than her confidence that’s she’s right about abortion. We can see, also, that she fails the Demotion Test with respect to this conjunction. To apply the test to the conjunction of Q_i’s, Ann must ask how confident she is that she made no undetected mistakes anywhere in her reasoning on any of the Q_i. Since some of the Q_i must involve tricky reasoning, it’s unlikely that Ann will be able to pass the Demotion Test here.

29 In general, $\Pr[P \land Q] \leq \Pr[P]$. And $\Pr[P \land Q] = \Pr[P]$ only when P and Q coincide.
If Ann is going to demote Beth as a peer on abortion, she can't depend on her confidence in the simple conjunction of her views on issues related to abortion. But maybe she can depend on her confidence that most of her views on those issues are right. To clarify this idea, let's look at a toy case, which I'll call WORKSHEET. We are each mentally completing a worksheet of 100 arithmetical sums. Because there's a time limit, we're being forced to move quickly, and we're somewhat prone to error. Based on a long track record of doing these sorts of problems in this way, you're highly confident that your chance of miscalculating a given sum is 15%, and your chance of error on any given sum is independent of your chance of error on any other: making a mistake on any one sum doesn't increase or decrease your chance of making a mistake on any other. Now suppose we find we disagree on \(n \) results. Then you can compare two cases. Case 1: your chance of error is 15% and my chance of error is more than 15%. Case 2: your chance of error is 15% and my chance of error is less than 15%. You're interested in comparing the likelihoods of the two cases, given that we disagree on \(n \) results:

\[
\frac{\Pr[n|\text{Case 1}]}{\Pr[n|\text{Case 2}]}
\]

These probabilities are fairly easily computed. When \(n \) is low, the likelihood of Case 2 will be greater than the likelihood of Case 1; this reverses when \(n \) reaches 28, at which point the likelihood of Case 1 becomes greater than the likelihood of Case 2.

This makes sense. If you think your chance of error is 15%, you'd expect to make on average 15 errors out of 100. If you thought my chance of error is also 15%, then you'd expect that I'd also make on average 15 errors out of 100. Since there's some chance we'd both make an error on the same sum, you'd expect to see somewhat less than 30 errors. Following statistical convention, we'll call the first probability “the likelihood that Case 1 obtains, given \(n \) disagreements”; we'll call the second probability “the likelihood that Case 2 obtains, given \(n \) disagreements.”

The probability we'll disagree \(n \) times will be: the number of ways you can get \(n \) wrong out of 100 times the probability that we both get \((100 - n)\) right times the probability that we'd disagree \(n \) times. The probability we'd both get a sum right is equal to the probability that I'd get it right times the probability you'd get it right. And the probability that we'd disagree on a sum is equal to the sums of the probabilities that 1) you'd get it right and I'd get it wrong, 2) I'd get it right and you'd get it wrong, and 3) we both get it wrong. For ease of calculation, I ignore the case where we both make mistakes and end up agreeing. Given these assumptions we have:

\[
\begin{align*}
\Pr[n|\text{Case 1}] &= \int_{15}^{1} \left(\frac{100}{n} \right) (.85(1-x))^{(100-n)}(.15x+.15(1-x)+.85x)^n \, dx \\
\Pr[n|\text{Case 2}] &= \int_{0}^{15} \left(\frac{100}{n} \right) (.85(1-x))^{(100-n)}(.15x+.15(1-x)+.85x)^n \, dx
\end{align*}
\]

From here onward, all numerical results were calculated by Wolfram Alpha: http://www.wolframalpha.com/.
disagreements. If you see fewer disagreements, then, holding fixed your rate of error at 15%, you should conclude that I probably made fewer errors than you, so my chance of error is likely to be lower than yours. If you see more than 30 disagreements, you should think I probably made the extra errors, again assuming that your rate of error is fixed at 15%.

What’s helpful for our purposes is that Case 1’s likelihood skyrockets relative to Case 2’s likelihood as \(n \) increases. When \(n = 50 \), the likelihood of Case 1 is 900,000 times that of the likelihood of Case 2. When \(n = 80 \), the ratio is over \(10^{27} \). So suppose we both completed identical worksheets, and you find that I disagree with you on 80 sums. Assuming that your chance of getting any one of the sums wrong is 15%, it’s reasonable for you to have extremely high confidence that you didn’t make most of those errors. This case now starts to resemble [CAREFUL MATH], in which it’s reasonable for you to conclude that I’m not your arithmetical peer simply on the basis that you disagree with me. And in fact, you pass the Demotion Test. Imagine that you made most of the errors in [WORKSHEET]. You must be cognitively malfunctioning to be making so many more errors in arithmetic than usual. But you can rule this out with high rational confidence—you can rely on personal information that you are not currently drunk, sleep deprived, etc., or that you did not decide on this occasion to blow off the worksheet and just write down a bunch of random answers, etc. You do not have comparable reasons to think that I am not malfunctioning in one or more of those ways. So your confidence that you are not malfunctioning is significantly higher than your confidence that I’m not malfunctioning. You should, therefore, demote me in [WORKSHEET].

What’s particularly interesting about this is i) you’d be justified in demoting me even though you’d clearly fail the Demotion Test on any individual sum and ii) you’d be justified in demoting me even without bothering to check carefully how many sums each of us actually got right.

The lesson here is an important one: many independent disagreements can “accumulate” into a reason sufficiently strong to demote someone from peerhood. For convenience, let’s call this technique “Demotion Through Disagreement Surplus.” This technique is tantalizing. A crucial problem for cases of [CONTROVERSY] is that we lack a clearly reliable procedure to answer questions, so we can’t reasonably have extremely high confidence that we’re not mistaken on the matters under dispute. But because of (i-ii), it looks like we found a way to demote someone without having to solve this problem.

But we must proceed carefully. You’re able to demote me by Disagreement Surplus in [WORKSHEET] only because personal information gives you reason to hold fixed your own chance of error (at 15%), and your lack of personal information about my cognitive state allows you to increase your estimate of my chance of error to account for the Surplus of Disagreements. But it’s not plausible that this sort of asymmetry in personal information obtains in cases of [CONTROVERSY]. In cases of persistent disagreement, there will be ample time to investigate and rule out all of these possible sources of cognitive impairment. It’s not reasonable to think that those who disagree with you about some controversial issue.
are mistaken because they are drunk, high, depressed, or not seriously thinking about the question, etc. If personal information is to play a significant role in [CONTROVERSY], we'll need to find a form of personal information that hasn't yet been brought up. And it's hard to find a suitable candidate.

When personal information is out of the picture, we get strict epistemic symmetry: there will be no more reason to hold your error rate, rather than mine, fixed at 15% (or vice-versa). And now we also have the option of accounting for the Surplus of Disagreement by increasing our estimates of both of our rates of error equally.\(^{34}\) In fact, raising our estimates of both of our error rates seems to be precisely the right thing to do when we find we disagree on many \(Q_i\) in a controversial domain. This is because, in cases of [CONTROVERSY], we lack a reliable method to determine who is actually correct. In [WORKSHEET] your track record gives you very strong reason to think that, if you're not malfunctioning, your chance of error really is 15%. In cases of [CONTROVERSY], we won't be able to be nearly as confident that our chance of error within the domain is any particular value. Once we find a large Surplus of Disagreement with a peer, a very likely explanation is that we made a self-assessment error, and we over-estimated our own reliability in the domain. So we should revise upwards our estimate of both of our chances of error in that domain. Neither one of us will have sufficient reason to think our initial estimate of our own chance of error must have been correct, and to revise upward only the other person's error rate. That would be claiming an epistemic advantage, which we're unable to claim because private information is unavailable.

These considerations, I think, are sufficient for showing that demotion by Disagreement Surplus won't work in areas of [CONTROVERSY]. But suppose, for now, that someone is able to come up with an appeal to private information that succeeds in an area of [CONTROVERSY], giving us sufficient reason to hold fixed our estimate of our own chance of error. Or suppose we find some other principle that puts a hard limit on our own chance of error. We might find plausible (but I will not here defend)\(^{35}\) a principle of self trust that prohibits me from thinking myself less than 50% reliable in some domain, but would not prohibit me from thinking someone else less than 50% reliable. Something like this would make it possible for demotion by Disagreement Surplus to work. So let's think through whether Ann may use a strategy like this to demote Beth.

Suppose Ann enumerated 100 questions \(Q_i\) related to abortion on which she disagreed with Beth. Then Ann reasons as follows:

I have only modest chance (85%, say) of getting any one \(Q_i\) right in the set of questions related to abortion \(\{Q_1, \ldots, Q_{100}\}\). Even so, it's extremely unlikely that I'd get most of the \(Q_i\)'s wrong. But Beth disagrees with me on all the \(Q_i\)’s. So Beth almost certainly made significantly more errors in her thinking about these questions, and she is not my peer on abortion.

\(^{34}\)In [WORKSHEET], for instance, if we increased both our rates of error from 15% to 45%, then we'd expect to see disagreement on 80 sums.

\(^{35}\)See Chapter 3.
It’s hard to tell with high confidence whether this will work without closely examining the details of the abortion debate, which is beyond the scope of this chapter. But I think the line of thought is, in general, unlikely to work in cases of [CONTROVERSY] like abortion. The central problem is this: the numerical results in [WORKSHEET] depend crucially on the probabilistic independence of your chance of error on each sum. That’s the only way you can start with a modest confidence that you’d get any individual sum right, yet end up with a very high confidence that you wouldn’t get very many sums wrong. To see this intuitively, suppose I believe P with 85% confidence. Now consider the set of related claims, each of which I also believe with 85% confidence: \{ $P \land P$, $P \land P \land P$, $P \land P \land P \land P$, \ldots \} Here, it’s clear that I’m deluded if I adapted the probabilistic properties of [WORKSHEET] to this case, concluding that it’s extremely unlikely that I got most of the items in this set wrong. This is because $P \land P$ is not independent of $P \land P \land P$ (and so on): $\Pr[P \land P | P \land P \land P] \neq \Pr[P \land P]$. All these claims are tightly linked logically, and they all stand or fall together.

The questions closely related to abortion will not be so tightly interdependent, but they will not be independent either. Given that the questions are all closely related to begin with, it’s likely that someone who gets one of those questions wrong will be logically and conceptually driven (on pain of inconsistency) to get many of the others wrong too. This sort of logical and conceptual interdependence between the questions should prevent Ann from being extremely confident that she wouldn’t get very many of the Q_i wrong. And that would block her attempt to demote through Disagreement Surplus.

And here’s the rub. I’m trying to use demotion through Disagreement Surplus to counter the claim that there are many peers among those who disagree with me in a case of [CONTROVERSY]. To pull this off, I will need to find a set of related questions Q_i such that: 1) a putative peer who disagrees with me on P will also disagree with me on all or most of the Q_i’s, and 2) the Q_i’s are relatively independent, so anyone who gets one of them wrong wouldn’t be rationally driven to get many other Q_i wrong. These criteria are mutually opposing. To satisfy (1), the Q_i must be closely linked to P, but that makes them less independent, so it won’t be reasonable to be highly confident I didn’t get most of them wrong. To satisfy (2), the Q_i’s must be independent, but the more independent the Q_i’s happen to be, the more likely it will be that I’d find a peer who agrees with me on most of the Q_i, yet disagrees with me on P. This is because, in domains of [CONTROVERSY], the group of people who disagree with me on P will typically be diverse. Not all of them will have the same reasons for thinking differently than I do on P. If I choose highly independent Q_i, the chances increase that I’ll find peers who disagree with me on P, yet agree with me on many of the Q_i. In this case I will no longer have as many separate points of disagreement with such peers, and it will be significantly less likely that I can accumulate a Surplus of Disagreements sufficient to demote them. In short, I should expect not to be able to demote some disagreeing peers on P because they agree with me on too many other things related to P, and thus I fail to avoid conciliation. We can call this the problem of Like-Minded Peers.

Elga actually recognizes this point, saying explicitly that Ann and Beth should conciliate
on abortion if they are in general moral and political agreement, and their disagreement is
confined to abortion and closely linked issues. But he downplays this result:

[S]uch cases only represent a small portion of cases of disagreement about hotly
disputed matters. As a result, the equal weight view does not require an im-
plausible across-the-board suspension of judgment. It does require much more
deferece to advisors than most of us in fact exhibit, but that is no embarrass-
ment to the view.36

I think Elga seriously underestimates the severity of the problem of Like-Minded Peers: it’s
not just a “small portion of cases” that work this way. But whether or not he is right is
ultimately an empirical question about the actual amount of diversity of opinion out there,
and it’s not within my scope to investigate this empirical question at length. I will, however,
show how a back-of-the-envelope calculation can suggest the problem of Like-Minded Peers
will be a serious problem for philosophy.

A recent survey looked at the views of professional philosophers on 30 key philosophical
questions, each presented with two, three or four proposed answers. It revealed a striking
lack of philosophical consensus. For a majority of the questions (16/30), the leading answer
had less than 50% support; for 23 questions, the leading answer had less than 60% support.
Only one view had greater than 80% support: 81.6% for non-skeptical realism about the
external world. And they found limited correlation between people’s answers.37

36Ibid., p. 497.
Here’s a summary of the results. A respondent is counted as “supporting” a particular answer if they self-report
as “accepting” or “leaning towards” an option.
(1) A priori knowledge: yes 71.1%, no 18.4%, other 10.5%.
(2) Abstract objects: Platonism 39.3%, nominalism 37.7%, other 23.0%
(3) Aesthetic value: objective 41.0%, subjective 34.5%, other 24.5%
(4) Analytic-synthetic distinction: yes 64.9%, no 27.1%, other 8.1%
(5) Epistemic justification: externalism 42.7%, internalism 26.4%, other 30.8%
(6) External world: non-skeptical realism 81.6%, skepticism 4.8%, idealism 4.3%, other 9.2%
(7) Free will: compatibilism 59.1%, libertarianism 13.7%, no free will 12.2%, other 14.9%
(8) God: atheism 72.8%, theism 14.6%, other 12.6%
(9) Knowledge claims: contextualism 40.1%, invariantism 31.1%, relativism 2.9%, other 25.9%
(10) Knowledge: empiricism 35.0%, rationalism 27.8%, other 37.2%
(11) Laws of nature: non-Humean 57.1%, Humean 24.7%, other 18.2%
(12) Logic: classical 51.6%, non-classical 15.4%, other 33.1%
(13) Mental content: externalism 51.1%, internalism 20.0%, other 28.9%
(14) Meta-Ethics: moral realism 56.4%, moral anti-realism 27.7%, other 15.9%
(15) Metaphilosophy: naturalism 49.8%, non-naturalism 25.9%, other 24.3%
(16) Mind: physicalism 56.5%, non-physicalism 27.1%, other 16.4%
(17) Moral judgment: cognitivism 65.7%, non-cognitivism 17.0%, other 17.3%
(18) Moral motivation: internalism 34.9%, externalism 29.8%, other 35.3%
(19) Newcomb’s problem: two boxes 31.4%, one box 21.3%, other 47.4%
(20) Normative Ethics: deontology 25.9%, consequentialism 23.6%, virtue ethics 18.2%, other 32.3%
This diversity in philosophical opinion makes the problem of Like-Minded Peers particularly troubling, and we can see why with a rough calculation. Suppose I’m a non-skeptical realist about the external world. Then I’m in the best possible case for avoiding conciliation: almost 82% of my peers agree with me. But out of a group of 1000 randomly selected philosophers I should still expect to find roughly 184 (18.4%) who disagree with me. And if I assume an average 30% chance someone would agree with me on a particular question, I should expect to find about 2 out of the 184 who agree with me on 15 or more of the remaining 29 questions. But 15 points of agreement are sufficient to prevent me from demoting a peer through Disagreement Surplus. If we’re peers, and we have an equal 30% chance of error on each of the 30 questions, then we should expect to find 15 points of disagreement on 30 questions. This means I’m able to demote such a peer through Disagreement Surplus only if I thought my average reliability on the 30 questions is significantly greater than 70%. My sense is that very few philosophers can reasonably claim that high of a success rate.

In sum: I’ve tried to force a dilemma on anyone hoping to demote others on P through Disagreement Surplus. Either choose issues that are tightly connected to P—in this case the probabilities won’t “add up” in the way needed to justify demotion. Or, choose issues that are independent—in this case you’re likely to find Like-Minded Peers who agree with you on too many points, yet still disagree with you on P. In this case, you won’t get enough Surplus of Disagreement to justify demotion.

There’s an additional problem. If you choose issues that are too independent of P, it can become doubtful whether someone’s performance on those issues is relevant to their

(21) Perceptual experience: representationalism 31.5%, qualia theory 12.2%, disjunctivism 11.0%, sense-datum theory 3.1%, other 42.2%.

(22) Personal identity: psychological view 33.6%, biological view 16.9%, further-fact view 12.2%, other 37.3%.

(23) Politics: egalitarianism 34.8%, communitarianism 14.3%, libertarianism 9.9%, other 41.0%.

(24) Proper names: Millian 34.5%, Fregean 28.7%, other 36.8%.

(25) Science: scientific realism 75.1%, scientific anti-realism 11.6%, other 13.3%.

(26) Teletransporter: survival 36.2%, death 31.1%, other 32.7%.

(27) Time: B-theory 26.3%, A-theory 15.5%, other 58.2%.

(28) Trolley problem: switch 68.2%, don’t switch 7.6%, other 24.2%.

(29) Truth: correspondence 50.8%, deflationary 24.8%, epistemic 6.9%, other 19.6%.

(30) Zombies: conceivable but not metaphysically possible 35.6%, metaphysically possible 23.3%, inconceivable 16.0%, other 25.1%.

\[184 \times \sum_{15}^{29} \binom{29}{n} \times .3^n \times .7^{29-n} \approx 2. \]

More specifically, for 15 disagreements:

\[\int_0^{.3} \binom{30}{15} (.7 \times (1-x))^{15} (.3 \times x + .3 \times (1-x) + .7 \times x)^{15} dx = 0.85. \]
performance on P. Why think, for instance, that someone’s performance on the Trolley Problem is at all relevant to whether they’d get Zombies right? This point casts into serious doubt the significance of the specific calculation I just provided. But if the pattern of diversity of opinion uncovered by the PhilPapers survey extends to the Big Questions within each philosophical subdiscipline (and I suspect for many, if not most subdisciplines, that it does), the concern about irrelevance goes away, and a parallel calculation would show that the problem of Like-Minded Peers forces conciliation on the main points of controversy within those subdisciplines.

1.6 Peerhood Re-examined

So far I’ve been assuming that in cases of [CONTROVERSY] I start with substantial positive reason to count as my peer many of those who disagree with me on P, and I’ve been arguing that I won’t have sufficient reason to demote these peers. But perhaps my initial assumption is incorrect—perhaps when P is controversial, I also won’t typically start out with much positive reason to count others as my peer on P. Perhaps this fact can help us to resolve the problem. The most obvious way to go still involves biting the Demotion Bullet: I end up concluding that those who disagree with me are (on average) my epistemic inferiors when it comes to P. But I’m also offering an explanation for this result. I started out lacking much positive reason to think any of them would be my peer with respect to P. And given how the Demotion Test works, this means it won’t take much to demote. When I start out lacking reason to count others as my peers on P, any reason to think I didn’t make an evidence assessment error would be enough for me to pass the Demotion Test.

But to resolve our puzzle it’s not enough simply to show how it can be reasonable to demote those who disagree with me. It’s also essential that I retain high confidence in P (i.e., “moral certainty”). And this is where I think this line of thought runs into trouble. It seems I can have high confidence in P only if I am confident in my ability to correctly assess the evidence concerning P. More precisely, the following seems plausible:

[ANTI-AKRATIC PRINCIPLE]: I can have high rational confidence in P only if I also have high rational confidence 1) that I didn’t make a mistake in my evaluation of the evidence concerning P and 2) that my evidence concerning P isn’t misleading.40

40The [ANTI-AKRATIC PRINCIPLE] entails A) it’s irrational for me to have high confidence in P and low confidence in whether I correctly evaluated the evidence concerning P, and whether the evidence is misleading, it also entails B) it’s irrational for me to have high confidence in P and no idea whether I correctly evaluated the evidence concerning P, or whether the evidence is misleading. For a defense of A), see Sophie Horowitz, ‘Epistemic Akasia’, Nous 48(3) (2013).

I am unable to defend B) in this chapter. Could this lacuna contain the resolution to our puzzle? The suggestion would go something like this. First, in a case of [CONTROVERSY], I simply have no reasons to think I did (or didn’t) make an evidence assessment error, and I have no reasons to think my evidence is (or isn’t) misleading. Second, since B) is false (and therefore the [ANTI-AKRATIC PRINCIPLE] is unsound), I
So it's not enough that I lack positive reason to count others as my peers on \(P \); I must also have positive reason to think I correctly evaluated the evidence concerning \(P \). In other words: to resolve our puzzle, we must see how I might lack grounds for making any peer assessments, yet still have grounds for a favorable self assessment. I will argue this is an unstable combination. If I lack grounds for peer assessment, I'll also lack grounds for self assessment. And if I have grounds for self assessment, I'll also have grounds for peer assessment. In fact, I usually will have grounds for both.

To see why, we'll need to look first at the sorts of grounds I can have for counting someone as my peer on \(P \). This is a tricky issue because counting someone as a peer is an *idealization*. When I count you as my peer for \(P \), I don't have confidence that you're precisely as good as I am at evaluating the evidence relevant to \(P \). I should expect one of us to be, objectively speaking, slightly better. But because our abilities, taken as a whole, are so similar, I'm unable to tell who is better. Because of this, I should count you as my peer.

It will help our thinking to consider what may appear at first to be an unrelated question. What sorts of reasons can we have for thinking a coin is fair? There seem to be three very different kinds of evidence. The first we may call *stereotypical* evidence. Suppose we're confident that quarters, in general, are fair, and that coins that look and feel like quarters are likely to be quarters. Then the fact that a coin looks and feels like a quarter can give us confidence that it is fair.

A second form of evidence is *underlying properties* evidence. One way to tell if a coin is fair is to measure its physical features: its shape, mass distribution, etc. To apply these measurements, we'll need to have a physical theory of how a coin's physical features influence its trajectory. If we have a theory that we're confident about, then measuring the coin's underlying properties can give us confidence that it is fair.

A third form of evidence is *track-record* evidence: one way to tell if a coin is fair is to flip it many times. If we flip a coin ten times and it lands heads every time, then we take that to rationally retain high confidence in my conclusion about \(P \) even while lacking such reasons.

But now what should my attitude be towards those who disagree with me on \(P \)? Assuming [DEMOTE OR CONCILIATE] is sound, I avoid conciliation only if I don't count those who disagree with me as my peers. But since, by hypothesis, I lack reasons to think I didn't make an evidence assessment error, the Demotion Test won't allow me to demote anyone. For my confidence in \(P \) itself doesn't factor into the Demotion Test; the Test tells me to compare 1) my reasons for thinking I didn't make an evidence assessment error with 2) my reasons for counting someone as my peer. And on our current hypothesis, I lack 1).

So I must lack peers who disagree with me, *and* I must not have demoted anyone. That can mean only one thing: I never had reason to count as a peer anyone who ended up disagreeing with me on \(P \). This state of affairs is most likely to obtain if I never had reason to count anyone as a peer—even those who ended up agreeing with me on \(P \). It would, after all, be a *remarkable* coincidence if I did have reason to count many people as my peer on \(P \), but after asking them what their views were on \(P \), I find that all of them happened to agree with me.

Thus, for this suggestion to resolve our puzzle, I must lack all positive reason to count anyone as a peer on \(P \). But later, at the end of Section 1.7, I will argue that this is implausible: we do often have reason to count others as a peer on controversial matters. If my arguments there are sound, they eliminate this option as a resolution to the puzzle.
be strong evidence that the coin is not fair. It’s not as obvious how this sort of evidence can give us positive reason to think that the coin is fair: flip a perfectly fair coin ten times, and it’s unlikely it will land heads exactly five times and tails exactly five times. Even so, we can get a sense of how this sort of evidence works by looking at probabilistic likelihood. Let \(E \) be the track record. Then we can compare the following two likelihoods:

\[
\begin{align*}
\Pr[E|\text{Fair}] & \\
\Pr[E|\text{Biased}] &
\end{align*}
\]

When the likelihood that the coin is fair is much greater than the likelihood the coin is biased, we have strong reason to take the coin to be fair.

It seems that analogues of each of these three forms of evidence are available for peerhood. Stereotypical evidence for peerhood would include facts like we both have an advanced degree from the same institution. Underlying properties evidence would include facts about our general level of intelligence, intellectual honesty, attentiveness, etc. And track-record evidence would include facts like my incorrectly splitting the check approximately as frequently as you in a long history of check-splitting. Each of these forms of evidence face limitations. Stereotypical evidence is probably easiest to verify, but it also seems the weakest. Someone’s having an advanced degree from a certain institution may give us some confidence that the person has competence in a field. But we’d expect to see considerable variation. If all I learn about you is that you have the same degree from the same institution, with the same specialization as myself, I have some reason to take you as my peer within that specialization. One of us was probably a better student, but given how little information I have, I might have no basis for thinking it’s more likely to be me than you (suppose here that I have strong reason to think I was an average student). But, again because I have so little information, my confidence that you’re a peer would be fairly weak. The weakness arises from the fact that it’s fairly likely for two people to both possess this stereotypical feature, yet still possess very different levels of actual competence within the domain.

Underlying properties evidence holds promise of giving me stronger reason to count you as a peer. If we’re confident that we have (roughly) equal levels of intelligence, honesty, attentiveness, and familiarity with the evidence, then it becomes much less likely that we’d have very different levels of competence with respect to \(P \). Unfortunately, these underlying properties tend to be difficult to measure with confidence, and translating those properties into a verdict on peerhood on some given \(P \) requires a theory which may itself be a source of disagreement.

Finally, track-record evidence holds promise of giving me very strong reason to count you as my peer. In [MENTAL MATH] we suppose we have a track record that indicates we make check-splitting mistakes at the same rate. The likelihood that we’re peers given this track record may be far greater than the likelihood that we’re not.\(^{41}\) After observing

\(^{41}\)Put precisely: \(\Pr[TR|\text{Peers}] \gg \Pr[TR|\neg\text{Peers}] \). Here, Peers is the hypothesis that the chance that I’ll split a check correctly is “close enough” to yours, where “close enough” is defined in terms of some significance factor: say, 5%.
very similar performance over a long enough track record, I should conclude it’s extremely unlikely that we have very different levels of competence. But to compare our track records in a domain, I have to determine how frequently I make mistakes when I’m thinking about various P within the domain, and compare that with how frequently you make mistakes. And unfortunately, to tell whether a particular conclusion about P is a mistake, I must have the truth about P—and this is likely to be a source of further disagreement when the domain is itself prone to controversy.

This discussion suggests that we understand the strength of reason I have to count you as my peer in terms of the probability that you’ll turn out to be “significantly” better or worse than me in your competence with respect to the evidence relevant to P. If this probability is high, then my reason for counting you as my peer is weak. If the probability is low, then my reason for counting you as my peer is strong.

There’s a difficulty here concerning what a “significant” difference in competence amounts to. If any difference at all is always significant (no matter how small) then in all cases, I’d have very weak reason to count you as my peer: it’s near certain that your competence is different from mine, simply because it’s very unlikely that we’d be precisely equal in all the relevant intellectual characteristics. If, on the other hand, it’s only larger differences in competence that are considered “significant”, then I might have strong reason to count you as my peer.

Finally, epistemic peerhood obtains only when two people have all the same evidence, but strictly speaking we can think no two people will have precisely the same evidence, simply because no two people will have the same history of experiences. Therefore sameness of evidence is also an idealization, and to properly account for this we should adopt an understanding of evidential parity for peerhood. That is: even if we both admit that you and I have different evidence, we should nevertheless recognize evidential parity with respect to some P when the differences in our evidence do not seem significant with respect to P, and neither of us has any idea whose evidence is more likely to be misleading. And again, we’ll say our reason to recognize evidential parity is “strong” when we think there’s a low probability that one of us has evidence that is significantly more or less misleading than the other. Our reasons are “weak” when we think there’s a high probability that one of us has evidence that is significantly more or less misleading than the other.

The following attempts to take into account these preceding thoughts about peerhood while leaving unspecified what sorts of differences should be considered “significant”:

[PEERHOOD] My confidence that I should count you as my epistemic peer with respect to P should be equal to my confidence that it’s unlikely for: 1) my total evidence relevant to P to be ‘much’ less (or more) misleading than yours or 2) my chance of making a mistake in evaluating that evidence to be ‘much’ less (or more) than yours.

It’s now easy to see how one might be led to doubt how we could have strong reason to

42I made this point previously in Footnote 1.
count anyone as our epistemic peer in controversial domains. Of our three types of evidence for peerhood, track-record evidence holds the greatest promise for providing strong support for peerhood. But to get a track-record, we must have an “answer key” that lets us determine how many times each of us got things right. In [MENTAL MATH] we have a procedure that we’re extremely confident can reliably determine whether someone has split the check correctly. In controversial domains, all we really have to rely on for determining someone’s track record related to P is 1) our own confidence about our answers for a set of issues Q₁ related to P and 2) whether a fellow thinker agrees or disagrees with us on each Q₁. We’ve already seen how difficult it can be for facts like these to give us reason to demote someone from peerhood. Why think such facts can give us positive reason to count anyone as a peer?

There’s more: it’s plausible to think that our other two forms of evidence for peerhood (stereotypical and underlying qualities) both must ultimately depend on track-record evidence. Why think that getting an advanced degree improves your competence in finding out truths within some domain? The natural response is to appeal to track record: people who have advanced degrees in the field tend to have more correct beliefs in the domain than people who don’t. Why think that having greater underlying intellectual virtue improves your reliability in finding truths? Again, the natural response is to appeal to track record: people with greater intellectual virtue tend to have more correct beliefs. If this is right, whether we have reasons for counting someone as a peer will depend simply on whether we have appropriate track-record evidence.

At this point, the important thing to note is that track-record evidence is needed not only for peerhood assessment, but also for self-assessment. In order to have confidence that I didn’t make a mistake in my evaluation of the evidence for P, I must appeal to my own track record in evaluating evidence for Q₁ related to P. My confidence that I didn’t make a mistake on this occasion must be grounded in my confidence that I frequently evaluate evidence without error in many other related instances. In fact, self-assessment is best understood as one half of a peerhood assessment. When I’m determining whether I should count you as a peer on P, I’m first performing a self-assessment to determine my own chance of making a mistake with respect to P. Then, I’m assessing your chances of making a mistake with respect to P. I then compare these two chances, and when these chances are close, I conclude I should count you as a peer.

If this is right, then we won’t be able to avoid our puzzle by claiming we don’t typically have grounds for counting someone as our peer on matters of [CONTROVERSY]. For if I am to have high confidence in P, by the [ANTI-AKRATIC PRINCIPLE] I must have high confidence that I’m not likely to make a mistake with respect to the evidence concerning P. And that confidence must come from my own track-record—my past performance on various Q₁, for which I presumably have high rational confidence that I assessed correctly. But if I have this track-record for myself, it seems straightforward to apply this to obtain evidence for peerhood. All I need is to figure out 1) whether others had similar evidence for the Q₁, and 2) what their judgments were. If their evidence and judgments roughly match mine, then I have strong reason to think they’re my peer with respect to P. There does not
seem much difficulty, in principle, in obtaining (1-2). So if I have track-record evidence sufficient for supporting a positive self-assessment, I should have no trouble obtaining track-record evidence sufficient for supporting a judgment of peerhood. But the latter will enable the arguments for conciliation.

It may of course turn out that I don’t have track-record evidence for either self-assessment or peer-assessment. But in this case, I will lack strong reason to think I didn’t make a mistake evaluating my evidence concerning P, and by the [ANTI-AKRASIA PRINCIPLE], I’m unable to have high confidence in my view on P. This will not help to resolve our puzzle.

1.7 Is conciliation self-undermining?

I now turn to a concern that arguments for conciliation are self-undermining. To get the conciliatory argument going, we must first possess reasons for counting a disputant as our epistemic peer. But perhaps application of the conciliatory arguments will undermine those reasons. If so, then the arguments for conciliation would have undermined themselves. The concern is that this happens frequently, perhaps for most cases of [CONTROVERSY].

Start with the assumption that I must have track record evidence to have reason to count anyone as my peer on P. To get this track record, I’ll look at our relative performance on some set of questions Q_i related to P. Suppose you happen to be a Like-Minded Peer who agrees with me on very many of the Q_i, yet disagrees with me on P. Then if my arguments for conciliation are right, we should both suspend judgment on whether P or ¬P. But now suppose each candidate question Q_i is also a matter of [CONTROVERSY]. If so, I’ll be able to repeat this procedure for each of the Q_i’s: I should be able to find some (other) Like-Minded Peer who disagrees with me on Q_n yet agrees with me on most of the other Q_i, forcing me to conciliate on Q_n. Now iterate this through all the Q_i: I end up being forced to conciliate on all of them.

[43] The undermining concern I discuss here is very different from the self-undermining concern typically discussed in the disagreement literature. The standard self-undermining argument starts by seeing conciliationism as a philosophical position which is itself subject to peer disagreement: The conciliationist finds himself faced with a philosophical peer who rejects conciliationism. So it seems the conciliationist must conciliate about conciliationism itself. Some theorists have argued that this makes conciliationism unstable or inconsistent. I think the problem is best addressed by understanding disagreement about conciliation as a third-order debate which forces us to adopt certain third-order attitudes towards the second-order attitudes prescribed by conciliation. For more on the standard problem of self-undermining, see Adam Elga, ‘How to disagree about how to disagree’, in: Ted Warfield and Richard Feldman, editors, Disagreement (Oxford: Oxford University Press, 2010), Brian Weatherson, ‘Disagreements, Philosophical and Otherwise’, in: David Christensen and Jennifer Lackey, editors, The Epistemology of Disagreement: New Essays (Oxford: Oxford University Press, 2013) and David Christensen, ‘Epistemic Modesty Defended’, in: David Christensen and Jennifer Lackey, editors, The Epistemology of Disagreement: New Essays (Oxford: Oxford University Press, 2013).
At this point, I cannot have strong reason to count anyone as a peer on \(P \). The \(Q_i \)'s were, by hypothesis, my basis for determining that I should count someone as my peer on \(P \). Presumably, I started out having some measure of rational confidence that each of my own answers for the \(Q_i \) tracked the truth, so it was reasonable for me to rely on my own views on the \(Q_i \) to determine if I should count you as my peer on \(P \): the greater the agreement between us, the stronger my reason to count you as my peer. But this line of thought isn't available to me after I've conciliated on each of the \(Q_i \). After conciliating on a question, I become completely uncertain about the correct answer to the question. This means I will not be able to extract a meaningful estimate of anyone's error rate from their answers to the \(Q_i \).

One might suggest that after the iterated conciliation, I should think the correct attitude to take towards each \(Q_i \) is suspension of judgment, which means I would have strong reason to count as my peer all and only those who also suspend judgment on all or most of the \(Q_i \). This is indeed a tempting suggestion, but it's incorrect. It is based on a misunderstanding of what conciliation involves.

It is essential to understand that conciliation is a second-order attitude that we take towards our first-order assessment of the evidence. When we assess evidence \(E \) relevant to \(P \), we're trying to answer the first-order question: “what is the maximally rational level of confidence in \(P \), given \(E \)?” Suppose we examine \(E \) and I end up thinking the answer is 90% and you end up thinking the answer is 10%. When we conciliate, we should not just average our two results and conclude that the answer to our first-order question should be exactly 50%. It's certainly possible that we both made mistakes in evaluating \(E \), but there's no reason to think our mistakes would perfectly cancel each other out, so that averaging our results would deliver the precisely correct credence for \(P \) on \(E \). Instead, we should think there's some chance that my answer to the first-order question is correct, some equal chance that your answer to the first-order question is correct, and some chance that both of our answers are wrong.\(^4^4\)

\(^4^4\)If you're not convinced, here's an example where this point is particularly clear, which I'll call [BIASED COIN]. We have a coin which we think is biased, and we're trying to calculate the level of bias. Let \(P \) be The coin will land heads, and let \(E \) include the laws governing the mechanics of coin-flipping, along with precise measurements of the coin's shape, mass distribution, etc. Assume for simplicity that we're both certain about \(E \): we're both certain that we have the correct physical theory about how a coin's characteristics determine its bias, and we're certain that the measurements are all correct. So we're just applying the theory to compute the coin's bias, and what bias we get will determine our credence in \(P \). But the calculations are complex and we're both fallible, so there's some chance we'll apply the theory incorrectly, causing us to calculate the wrong bias for the coin. We do the calculations; my calculations tell me the coin is biased a certain amount towards heads: accordingly I adopt credence 0.72 in \(P \). Your calculations tell you the coin is biased a certain amount towards tails: you adopt credence 0.28 in \(P \). Since we're peers, we conciliate.

I think it is obvious in this case that that it would be a mistake for us to conciliate by averaging our credences in \(P \), coming to the conclusion that, the correct credence is 0.5. It is of course possible that both of us made a mistake in our calculations, but there's no reason to think it's certain that our mistakes would perfectly balance, so that when we average our results and find a probability of 0.5, we should conclude the coin must be (physically) perfectly fair. Instead, when we conciliate, we should conclude that there's some
Let’s apply this insight to our iterated conciliation. For simplicity, let’s work with the tripartite division of attitudes: flat-out belief, disbelief, and suspension of judgment. Before conciliating, I examine the evidence E relevant to each Q_i, and suppose I come out believing all the Q_i. After I’ve iterated through the contingent of Like-Minded Peers, I’ve conciliated on each of the Q_i’s. But I do not make the mistake of becoming certain that suspension of judgment is the maximally rational attitude for each Q_i, given E. Instead, I think, for each Q_i, that there’s some chance (say, s) that I was right: belief is maximally rational for Q_i. I also think there’s an equal chance s that disbelief is maximally rational for each Q_i, and I think there’s some remaining chance (1 − 2s) that suspension of judgment is maximally rational. But this set of attitudes will be of no use at all for comparing people’s chances of correctly assessing the evidence concerning P. Indeed, once I’ve conciliated in the above manner, I’ll be unable to distinguish between someone who is a perfectly reliable assessor of the Q_i from someone who simply flips a coin to determine what they’ll believe about each Q_i.

For suppose I take the straightforward approach of judging people’s chance of error on P by looking at their attitudes to each Q_i, estimating what I think their chance of error is in each instance, and taking the average of those chances. And suppose for simplicity that the available evidence E is not misleading, so correctly evaluating it will lead to the correct answers for each Q_i. PERFECT evaluates the evidence impeccably, so she ends up believing each Q_i if and only if Q_i is true and disbelieves Q_i if and only if Q_i is false. But I, having conciliated on all the Q_i’s, will be unable to detect this; I must judge PERFECT’s chance of error on each Q_i to be (1 − s). This is because for each Q_i, PERFECT will either believe it or disbelieve it. But whichever way she goes, I will think the chance that her attitude is correct is s, so her chance of error is (1 − s). Thus, I will calculate PERFECT’s average expected error rate over all the Q_i to be (1 − s).

RANDOM ignores the evidence and ends up repeatedly flipping a coin to determine what he’ll believe: he’ll believe Q_i if the first flip is heads and disbelieve it on tails. Then he’ll flip again and believe accordingly for each Q_i. Notice that here again, I will judge RANDOM’s chance of error on each Q_i to be (1 − s), so I will estimate RANDOM’s average error rate over all the Q_i’s to be (1 − s)—the same as my estimate for PERFECT. Thus, once I’ve conciliated on the Q_i’s, I’m unable to distinguish between PERFECT and RANDOM’s error rates. This makes me a remarkably poor judge of epistemic competency. Track-record evidence on the Q_i’s has become useless to me for determining peerhood.45

45You might suggest that, in spite of all I’ve said, there’s still a certain kind of person whom I’d have strong reason to count as a peer: namely anyone who holds exactly the same second-order attitudes as I do to each of the Q_i’s. This would be someone who, just like me, thinks there’s some chance s that belief is correct for each Q_i, an equal chance that disbelief is correct, and the remaining chance (1 − 2s) of suspension of judgment. Of course it’s right to say that I should count such a person as my peer—but I only have reason to think he is as good as I am at conciliating. That is: I should think he is equally competent as I am at properly taking into account the second-order evidence of pervasive disagreement on each Q_i. But I’m left with no idea what
So to review: I’ve argued that conciliation is required for all matters of [CONTROVERSY], but now we’ve uncovered a serious concern that this result may be self-undermining. To be required to conciliate on P, I must have reason to count you as my peer on P. And to have reason to count you as my peer, I must have track-record evidence: I must have confidence in my answers to many Q’s related to P, and your answers to the Q’s must compare favorably to mine. But if P is a matter of [CONTROVERSY], then the Q’s will also be matters of [CONTROVERSY]. So if I must conciliate on P, I must also conciliate on the Q’s. Now suppose (for reductio) that I must conciliate on P; then I must also conciliate on the Q’s. But once I’ve conciliated, I will lack confidence in my answers to the Q’s. So I will not have track-record evidence for P. Thus, I will no longer have reason to count anyone as my peer on P, so now it’s not the case that I must conciliate on P. Thus, it’s self-undermining to think that conciliation is required for matters of [CONTROVERSY].

The best response to this problem, I think, is to cast doubt on whether it is really the case that the questions which serve as the track-record for some controversial P must themselves be controversial. Take philosophy, for instance, a field which is as afflicted by controversy as any. Despite philosophers’ inability to reach agreement on major philosophical theses, there is nevertheless a significant amount of consensus on smaller philosophical questions and arguments which are widely recognized as successful. Even in cases where I disagree deeply with the primary conclusion of an extended philosophical argument, I’ll often find numerous individual points of agreement along the way—places where the author’s sensibilities align with my own, and where I find the author’s insights to be illuminating and helpful. All these can contribute to increasing my confidence that someone is my philosophical peer.

And there’s more. “Track-record” as I’ve defined it captures only whether someone agrees with me on various points, but that doesn’t seem to capture all that’s relevant to his reliability is with respect to assessing the first-order evidence: the evidence E that’s relevant to whether one should believe or disbelieve each Q. So I have no idea whether he’s my first-order peer.

David Chalmers ran an informal Internet survey to collect examples of arguments which, as a matter of empirical fact, are consistently recognized as successful by professional philosophers. In addition to Gettier’s argument that knowledge is not justified true belief and Lewis’s argument that conditional probabilities are not probabilities of conditionals, he obtained these candidates:

- the forcible-organ donation argument against simple versions of utilitarianism, Kripke’s argument that necessity comes apart from apriority, Gödel’s argument against versions of mathematical formalism, the argument from evil against theism, the model-theoretic argument against global descriptivism, the perfect actor argument against logical behaviorism, the multiple-realizability argument against the identity theory, Goodman’s argument against purely formal inductive logic, arguments from relativity against presentism, Frankfurt’s argument that moral responsibility does not require the ability to do otherwise, Hart’s argument against Austin’s command theory of laws, Russell’s refutation of Frege’s Basic Law V, Moore’s open question argument against analytic naturalism, Putnam’s argument for externalism about meaning, Descartes’ cogito.

peerhood. Also relevant is someone’s facility in crafting philosophical arguments. Once we grant that minor philosophical results are often non-controversial, we can proceed to assess how easily someone is able to accurately spot considerations that non-controversially support or oppose proposed philosophical theories; how readily they can identify hidden assumptions or gaps in an argument; how they’re able to craft cases or counterexamples that support or contradict a view, etc. Also important is whether someone has been successful in persuading me to conclude she is right, either on something which I previously had no opinion, or on something for which I previously held the opposite opinion. This is not the place for an analysis of everything that comprises philosophical skill; the suggestion is just that there seem to be markers of philosophical ability which can give us reasonable confidence that someone is equally well-positioned as ourselves to correctly assess other philosophical questions, and these markers are often themselves generally recognized and uncontroversial.

So even in field like philosophy, where there’s a very high level of controversy about the Big Questions, there’s still sufficient agreement that can yield ample evidence for supporting a rational confidence that we should count someone as our peer with respect to a Big Question. Of course, when we find that such people disagree with us on the Big Question, we are forced to conciliate. But because there’s a relative lack of controversy about the considerations which indicate philosophical skill, there’s much less worry that conciliation will undermine the grounds we depend upon to take others to be our philosophical peers. So we’re left having reason to think that plenty of other people have just as much (or more) philosophical ability as ourselves, but sadly that none of us have sufficient ability to conclusively resolve the Big Questions.

Similar thoughts should be sufficient to prevent conciliation from self-undermining in other fields, though it would take us too far afield to examine matters in detail. In the moral domain, for instance, it seems there’s a vivid divide between non-controversial moral questions (e.g., whether torturing babies for fun is immoral), and controversial ones (like whether extramarital sex is immoral). My proposal is that agreement on the non-controversial moral questions can give us reason to count others as peers on the controversial moral questions. If so, the argument for conciliation would force us to conciliate on the controversial questions, but our reasons to count others as peers will be relatively immune to conciliation, since they do not themselves concern controversial matters.\footnote{Hilary Kornblith makes a similar point in Hilary Kornblith, ‘Belief in the Face of Controversy’, in: Ted Warfield and Richard Feldman, editors, Disagreement (Oxford: Oxford University Press, 2010), pp. 49ff.}

\footnote{In fact, many of these non-controversial moral questions work like [CRAZY MATH]: I’m justified in demoting someone simply because they disagree with me. I set aside the difficult question of how to view error theorists, who reject the common-sensical responses to these questions because they think all moral claims are, strictly speaking, false.}
1.8 Some objections to averaging credences

Before we tackle the next topic, it’s worth noting that a number of objections to conciliation are best understood as artifacts of the standard conception of conciliation in terms of averaging first-order credences. Once we reinterpret conciliation as recommending a certain set of second-order attitudes, these objections dissolve.

Suppose I’m at 0.1 for \(P \) and I encounter FIRST, who is at 0.7, and I understand conciliation as requiring that we average our credences. Then I will move to 0.4. Now suppose I encounter SECOND, who is at 0.9. I conciliate again, so I end up at 0.65.

Now suppose I first encounter SECOND instead. Then if I conciliate, I’ll go to 0.5. If I then encounter FIRST, I’ll move to 0.6. I’ve conciliated with the same two people with the same credences, but what credence I end up with depends on who I first meet. This is absurd.\(^{49}\)

This problem goes away if we think conciliation happens at the level of second-order attitudes. After I encounter FIRST, I should think there’s some chance I’m right, some equal chance FIRST is right, and some chance we’re both wrong. When I subsequently encounter SECOND, I do not suddenly forget that I’ve already conciliated with FIRST. Rather, I should think there’s some chance SECOND is right, some equal chance FIRST is right, and yet another equal chance that I’m right. When I encounter the second peer, I just redistribute the probabilities evenly, making sure that I assign equal chances to each of us being right.

None of this is any different if I encounter SECOND first. In the end, I will redistribute probabilities to assign equal chances to each of us being right. And I will end up with precisely the same attitude, no matter who I meet first.

Of course, an advocate of averaging could also insist that, upon encountering the second peer, I shouldn’t forget that I’ve already conciliated with another peer, so I should average our three credences, and that the result of this procedure would be the same no matter what order I encounter the peers. So here’s a stronger objection, due to Thomas Kelly. Consider a case where the maximally rational credence for \(P \) given \(E \) is 0.1. WRONG incorrectly evaluates \(E \), arriving at a credence of 0.7 for \(P \), and WRONGER does worse, getting 0.9. Kelly takes conciliation in this case to involve WRONG and WRONGER both moving to a credence of 0.8 (the average of 0.7 and 0.9). Kelly then notes it would be odd for the conciliationist to say that 0.8 is a rational credence for both WRONG and WRONGER simply because they conciliated correctly. That makes it too easy to acquire a rational credence.

But it’s also odd for the conciliationist to say that WRONG and WRONGER’s final credence is irrational in virtue of their initial incorrect assessment of \(E \). For suppose instead of encountering WRONGER, WRONG meets and conciliates with RIGHT, who correctly

adopted credence 0.1. Then RIGHT and WRONG both end up with credence 0.4 (the average of 0.1 and 0.7). To be consistent with what we just said about WRONG and WRONGER, we should now say that WRONG’s credence is irrational, in virtue of his initial incorrect assessment of E. RIGHT, on the other hand, correctly assessed E and correctly conciliated: since he made no mistakes, his credence must be fully rational. But this is counter-intuitive: RIGHT and WRONG end up with precisely the same credence in P and they have the same evidence too: namely E, plus facts about how they initially responded to E. How could the same credence in P, on the same total evidence for P, be rational for RIGHT yet irrational for WRONG?\footnote{Kelly, ‘Peer Disagreement and Higher-Order Evidence’, p. 125-127.}

We begin to dissolve Kelly’s difficulty when we distinguish between first-order rationality (which concerns one’s assessment of E) and second-order rationality (which concerns one’s assessment of whether one made a mistake in assessing E). On my understanding of conciliation, RIGHT and WRONG shouldn’t end up with any precise first-order attitude toward P; instead they should think there’s some chance 0.1 is the right credence for P, some equal chance that 0.9 is the right credence, and some chance that the right credence is something else altogether. This combination of second-order attitudes is impeccable, given the total evidence. So RIGHT and WRONG end up with fully rational second-order attitudes. But this combination of second-order attitudes does not permit them to have any definite first-order attitudes at all. Their attitudes toward P can only be captured by the complex second-order attitudes. So on my view, when WRONG properly conciliates, he acquires a rational second-order attitude and loses an irrational first-order attitude. RIGHT, however, moves from a rational first-order attitude to a rational second-order attitude. No problem here: they have the same total evidence, they end up with the same attitudes toward P, and their final attitudes are both fully rational. This is a case where WRONG is rendered rational by properly responding to an encounter with a rational inquirer. I see nothing particularly mysterious or puzzling about thinking that such encounters can occur.

Now what about WRONG and WRONGER? On my understanding of conciliation, they should think there’s some chance 0.7 is the right credence for P, some equal chance that 0.9 is the right credence, and some chance that the right credence is something else altogether. This combination of second-order attitudes is, in one sense, impeccable, given the (admittedly regrettable) results of their first-order analysis. So WRONG and WRONGER end up with rational second-order attitudes.

But to be consistent with what I just said about RIGHT and WRONG, shouldn’t I say that WRONG and WRONGER also both lose their irrational first-order attitudes of 0.7 and 0.9? If so, then I’ve fallen into Kelly’s trap: by conciliating, they’ve lost their irrational (first order) attitudes and gained a rational (second order) attitude. And that makes rationality too easy to acquire.

The key to resolving this problem lies in the structure that is retained within the complex second-order attitudes that WRONG and WRONGER have adopted. In one sense, the attitude is rational: it represents the correct way for two peers to conciliate when they find
out they disagree on P. But in another sense, the attitude is irrational: the main options
given for the first order-attitudes for P (0.7 and 0.9) are both irrational on E. And this,
I think, is exactly what the conciliationist should say in reply to Kelly. WRONG and
WRONGER arrive at a complex second-order attitude toward P which is, in one sense,
rational and, in another sense, irrational. But RIGHT and WRONG arrive at a complex
second-order attitude toward P which is in both senses rational.

To show how this can be sensible, I need to be more specific about the attitudes that
RIGHT, WRONG and WRONGER end up at. So far I've been saying only that after
conciliating, two peers will end up thinking there’s “some chance” that one is right, an
“equal” chance the other is right, and a remaining chance that the right answer is something
else altogether. Let’s think through what these chances should be. We’ll start over again
from the beginning. RIGHT has evaluated E and has arrived at a credence of 0.1 for P.
But RIGHT is also aware that she is fallible in her assessment of such evidence. Suppose
she thinks herself to have a 80% chance of correctly assessing the evidence. So what should
her attitude towards P be?

Here we must be careful to distinguish between the attitude one should have towards P
and one's expected reliability in arriving at a correct credence in P. In particular, we should
be careful about how we interpret this principle, which many writers have found attractive:

Calibration Rule: If I draw the conclusion that P on the basis of any evidence
E, my credence in P should equal my prior expected reliability with respect to
P.\(^{51}\)

We might interpret the Calibration Rule as telling me first to evaluate E to figure out
whether P, and then to set my credence in P to r, the chance that I correctly evaluated E.
Interpreted this way, the rule is unsound. This is because our first-order evidence for P, in
general, will itself render maximally rational a particular level of credence in P. Some bodies
of evidence make P very likely; other bodies of evidence will make P moderately likely; still
others make P moderately or very unlikely. But none of this has anything to do with the
chance that I’d make an evidence assessment error when thinking about E. My chance
of error will generally depend on factors unrelated to P—factors like my attentiveness to
detail, my intellectual honesty, etc. This makes it a mistake to apply the Calibration Rule by
always setting my credence in P equal to a constant r, my reliability in evaluating evidence
about P. That makes me incapable of appreciating the specific degree which my evidence E
renders P likely.\(^{52}\)

\(^{51}\)I take this statement of Calibration from Roger White, ‘On Treating Oneself and Others as Thermome-
ters’, *Episteme* 6:03 (2009), p. 239.

\(^{52}\)A particular case where this is especially vivid is, again, [BIASED COIN] (see Footnote 42). Here P
is the coin will land heads, but the evidence in a given case will point to a particular credence I should have
towards P, with each differing E giving rise to a different credence appropriate for P. In this sort of situation,
it’s improper to substitute my reliability r in place of the credence for P that I think E points towards. If r is
low, I should think I’m likely to be wrong about what this credence is. But there’s no reason to think r would
We should conclude from this that RIGHT’s attitude towards P isn’t representable by a simple number, even prior to conciliation. Instead, she holds a cluster of second-order beliefs: that there’s r (80%) chance that her credence in P should be 0.1 and $(1 - r)$ (20%) chance that her credence in P should be something else. And the same would apply to WRONG. WRONG completes the calculation and got 0.7. But WRONG should also think: there’s r chance that his credence in P should be 0.9, and $(1 - r)$ chance that his credence in P should be something else. Since RIGHT and WRONG count one another as peers, their estimates for r are equal: 80%.

Now they conciliate: they take each others’ assessments of the evidence to have equal chance of being right. Conciliation requires that they think there’s some chance one of them is correct, an equal chance the other is correct, and some remaining chance that neither is correct. And we can calculate these chances. After conciliation RIGHT and WRONG should think there’s a $0.8/(1 + 0.8) = 44.4\%$ chance that 0.1 is the correct credence for P, an equal 44.4% chance that 0.7 is the correct credence for P, and a $(1 - 0.8)/(1 + 0.8) = 11.1\%$ chance that the correct credence for P is something else altogether. This calculation looks the same in the case that WRONG conciliates with WRONGER: here, they end up thinking there’s a 44.4% chance that 0.7 is the right credence for P, a 44.4% chance that 0.9 is the right credence, and a 11.1% chance that the right credence is something else altogether.

Now, we can compare the attitude that RIGHT and WRONG end up with with the attitude that WRONG and WRONGER end up with. The first thing to note is that, in one sense the attitudes are equally rational: they are the second-order attitudes recommended by conciliation. But in another sense, the former is clearly more rational than the latter.

My reliability in evaluating the physics of the coin doesn't have anything to do with physics that determine the chances that the coin will land one way or another.

\begin{align*}
\Pr[\text{RIGHT is correct, WRONG is incorrect}] &= r(1 - r) \\
\Pr[\text{RIGHT is incorrect, WRONG is correct}] &= (1 - r)r \\
\Pr[\text{Both incorrect}] &= (1 - r)^2
\end{align*}

So, ignoring the case where they both make the same mistake and agree on the wrong answer, we have:

\begin{align*}
\Pr[\text{RIGHT and WRONG Disagree}] &= r(1 - r) + (1 - r)r + (1 - r)^2 \\
&= 1 - r^2 \\
\Pr[\text{RIGHT is correct|They Disagree}] &= \Pr[\text{WRONG is correct|They Disagree}] \\
&= r(1 - r)/(1 - r^2) \\
&= r/(1 + r) \\
\Pr[\text{Both are incorrect|They Disagree}] &= (1 - r)^2/(1 - r^2) \\
&= (1 - r)/(1 + r)
\end{align*}
This is because RIGHT and WRONG’s attitude assigns a (relatively) high 44.4% chance to the correct credence of 0.1, while WRONG and WRONGER’s attitude assigns at most a 11.1% chance, grouping the correct credence in with the “something else” category. This accommodates our intuition that RIGHT could remain fully rational after conciliating with WRONG, while WRONG and WRONGER still remain irrational in an important sense, even if they correctly conciliate with one another.

Of course, given only the information that 0.1 is the correct credence for \(P \), we should judge RIGHT’s initial attitude (80% chance that 0.1 is the correct credence) to be more rational than RIGHT’s final attitude (44.4% chance that 0.1 is the correct credence). So shouldn’t we conclude that RIGHT moved from a more rational attitude to a less rational attitude, after conciliating with WRONG?

No. Because the fact that 0.1 is the correct credence isn’t the only relevant information we have: there’s also the information that RIGHT encountered WRONG, who started out thinking there’s an 80% chance that 0.7 is the correct credence. And given this complete information, RIGHT and WRONG’s final attitude is maximally rational.\(^{54}\)

1.9 Epistemic Permissiveness

I now consider a solution to our puzzle which begins with the thought that epistemic peers might sometimes disagree even though neither party made any mistakes in their assessment of the evidence. To be clear, I’m not appealing to some sort of relativism or vagueness

\(^{54}\)Our framework permits us to analyze cases of disagreement where we’re not counting one another as peers. Suppose we both think my reliability is \(r \) and yours is \(s \), where \(r \neq s \). Then:

\[
\begin{align*}
\Pr[\text{Both Right}] &= rs \\
\Pr[\text{I’m right, You’re wrong}] &= r(1 - s) \\
\Pr[\text{I’m wrong, You’re right}] &= (1 - r)s \\
\Pr[\text{Both Wrong}] &= (1 - r)(1 - s)
\end{align*}
\]

And, ignoring the case where we both make the same mistake and agree on the wrong answer, we have:

\[
\begin{align*}
\Pr[\text{We Disagree}] &= r(1 - s) + (1 - r)s + (1 - r)(1 - s) \\
&= 1 - rs \\
\Pr[\text{I’m right|We Disagree}] &= r(1 - s)/(1 - rs) \\
\Pr[\text{You’re right|We Disagree}] &= s(1 - r)/(1 - rs) \\
\Pr[\text{Both Wrong|We Disagree}] &= (1 - r)(1 - s)/(1 - rs)
\end{align*}
\]

The important result here is the probability that I’m right, given that we disagree. According to our formula, my probability that my credence in \(P \) is correct should go to \((r - rs)/(1 - rs) \) after I learn that we disagree. Before learning that we disagree, my probability for this was \(r \). This means the only way I can avoid adjusting my credence altogether is to think that \(s = 0 \)—to think that you have zero chance of correctly evaluating the evidence. So even if I think I’m significantly better than you as an epistemic agent, I must adjust my attitudes after learning that we disagree as long as I think there’s some chance that you correctly assessed the evidence.

41
about P itself: I’m not suggesting that P is “true for me” and ¬P is “true for you”, whatever that might mean. So, I’m retaining the assumption that P is true (absolutely), and ¬P is false (or vice-versa). Thus, we’re not modifying an assumption we’ve had all along: one of us must be mistaken about P if one of us believes P while the other believes ¬P. What I’m considering is the possibility that despite disagreeing, we might both be wholly unimpaired in our evaluation of the evidence relevant to P.

Intuitively, this suggestion is most clearly plausible when we retreat from cases of acute disagreement, where one of us believes P and the other ¬P. Consider instead a marginal case where we both believe P, but I adopt credence α in P while you adopt credence β. When α is fairly close to β, it seems plausible to say that neither of us made a mistake in how we evaluated E. For it’s rather implausible to think that one’s total evidence will always specify a precise, uniquely rational credence for P. Instead, it can seem that our total evidence should often permit us to adopt any credence within a small range of credences for P, all of which are fully rational. It seems possible for two people faced with the same total evidence E for P to each fully rationally adopt slightly different credences for P. To introduce some terminology: in such a case, we’ll say the evidence is moderately permissive. We’ll also say that a theory is “moderately permissive” if it says such cases can obtain.

Moderate permissiveness won’t help us to resolve our puzzle. Our puzzle isn’t about disagreements that involve only slightly different credences. Our problem in cases of [CONTROVERSY] is to explain how it can be fully rational to remain highly confident in P while also acknowledging as peers those who remain highly confident in ¬P. So we need to take moderate permissivism and extend it: to say that given some bodies of evidence, it can be fully rational for people to adopt very different credences in P: one might, for instance, have moral certainty that P, while the other has moral certainty that ¬P. Here, they find themselves in acute disagreement even though both are fully rational in their evaluation of E. We’ll say that this is a case where our evidence is strongly permissive.

Suppose that, in cases of [CONTROVERSY], the available evidence is strongly permissive. This seems to let us avoid both Demotion and Conciliation. Suppose I have high credence that P, you have similarly high credence that ¬P, and we both count one another as peers on P. Suppose also that this is an strongly permissive case, and the Epistemology Oracle tells us that we’re both fully rational in adopting our respective credences toward P. Then we’ll both have reason not to demote one another on P: We recognize that we both evaluated E fully rationally, so our disagreement is no reason to stop thinking that we’re equally competent when it comes to assessing evidence. Epistemic peerhood on P is defined in terms of having equal competency for correctly evaluating the evidence relevant to P. It is not defined in terms of being equally likely to get P right.

But at the same time, it seems neither of us will be rationally required to conciliate. Thanks to the Epistemology Oracle, we’re both rationally certain that we made no rational errors in our evaluation of E, and that our respective credences in P are both fully rational on E. And in fact both credences are fully rational. How can there be any rational requirement for me to revise a credence that I rationally believe is fully rational, and is in fact fully
rational on my evidence? It can seem there can’t be. (But we’ll re-visit this shortly.) So neither of us has reason to modify our credences, and neither of us has reason to demote each other. And this is precisely the result we were looking for to resolve the puzzle. So far, so good.55

Unfortunately this idea, when applied to actual disagreements, faces significant difficulties. We had to enlist our handy Epistemology Oracle to set up the case, but in real life, our fallibility should prevent us from being completely confident that our evidence is really permissive. To start, there are quite formidable arguments that evidence cannot ever be permissive.56 And even if we could be rationally certain that those arguments are unsound, so permissive cases are possible, it’s still clear that not all bodies of evidence are strongly permissive. So even if our evidence in particular case of [CONTROVERSY] is really strongly permissive, we may not be rationally certain that it is. This uncertainty can drive us to reduce our confidence we’re right about \(P\) in response to peer disagreement.

Further, even if there’s somehow no doubt that we are in a permissive case, our fallibility might still prevent us from being rationally certain that our particular responses to evidence are fully rational. Just because a case is permissive does not mean “anything goes”: it’s still possible to make mistakes while evaluating permissive evidence. And this possibility is even more significant for the tricky questions that give rise to [CONTROVERSY]. So even if you and I are in fact fully rational in adopting our conflicting views on some \(P\), it may be that neither of us will be rationally certain of this. In these cases, learning that we disagree can give us reason to increase our estimates of our chance of having made an error, thereby forcing us to reduce our confidence that we got \(P\) right.

Finally (and most importantly), let’s revisit our assumption that I won’t have reason to revise a credence that is fully rational, and which I rationally believe is fully rational. Stewart Cohen has argued that this assumption is false. He starts by having us consider a case where you and I have different evidence concerning \(P\). You conclude \(P\) on your evidence, and I conclude \(\neg P\) on mine. Now suppose the Epistemology Oracle tells us that we both responded fully rationally to our evidence. Cohen points out that, in this case, it seems uncontroversial that we’re both rationally required to revise our confidence in our conclusions. (We must revise because the disagreement is evidence that our evidence may be misleading). Cohen then goes on to propose that there’s rational pressure to revise our confidence in our conclusions even in a case where you conclude \(P\) and I conclude \(\neg P\) on the same evidence, and the Epistemology Oracle tells us that we both responded fully rationally to our evidence.57

Cohen’s proposal has plausibility because none of us care only about being rational (responding correctly to our evidence). We also care about getting things right (believing

truths and avoiding falsehoods). Given this, we should expect there to be two ways to acquire rational pressure to modify our beliefs. The first is by encountering evidence that our beliefs may be irrational. A second is by encountering evidence that our beliefs may be false. Peer disagreement can be evidence of both. If we recognize with certainty that we’re in an strongly permissive case, we won’t have the first kind of pressure. But we might still have the second kind of pressure. Cohen argues that there is such pressure, and his suggestion is that this pressure is sufficient to motivate conciliation. If he’s right, appeals to permissivism won’t be able to resolve our puzzle.

We’ll soon look more closely at whether Cohen’s argument is sound. But first, I want to note that having two sources of pressure for conciliation can actually help us to resolve our puzzle. Recall the table of intuitions which represents our puzzle:

<table>
<thead>
<tr>
<th>Case</th>
<th>Conciliation</th>
<th>Demotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MENTAL MATH], [PHOTO FINISH]</td>
<td>Required</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>[CRAZY MATH], [CAREFUL MATH]</td>
<td>Not Permitted</td>
<td>Required</td>
</tr>
<tr>
<td>[CONTROVERSY]</td>
<td>Not Required</td>
<td>Not Permitted</td>
</tr>
</tbody>
</table>

Notice that in the first two rows, Conciliation is required if and only if Demotion is not permitted, and vice-versa. There’s no “slack” here: either you must conciliate, or you must demote. There are no cases where you have any choice on either. Yet I take it that our intuition for cases of [CONTROVERSY] is that Conciliation is not required. In other words, our intuition is that it’s rationally permissible, in cases of [CONTROVERSY], to respond by remaining confident that we are right, but it’s also rationally permissible to suspend judgment. We have an option here, and that seems unique to these sorts of cases.

But if there are two sources of pressure to conciliate, that can explain why we have an option here. Let’s assume that Cohen is right, so in a permissive case, disagreement is evidence that our belief may be false, and that exerts some rational pressure to conciliate. If we disagree in an impermissive case, then we’ll also have additional pressure to conciliate, since the disagreement is also evidence that at least one of our beliefs is irrational. If, however, we disagree in a permissive case, then we might not have this additional pressure, since the disagreement need not be evidence of such irrationality. It’s plausible to think that, when we have both sorts of pressure to conciliate, we are required to do so. But perhaps when we have only one, we have the option of either conciliating or remaining steadfast. (After all, whatever enables permissivism in general may very well also enable this additional bit of permissiveness.) What’s more, cases of [CONTROVERSY] seem (intuitively) to be good candidates for permissiveness, whereas our other cases (like [MENTAL MATH]) are not. That would explain why conciliation is an option in cases of [CONTROVERSY], but it is something that is either required or not permitted in our other cases.

Cohen argues that the rational pressure that remains in permissive cases—the pressure exerted by evidence that our beliefs may be false—is by itself sufficient to require conciliation. Let’s now look at his argument. He says that peer disagreement in a permissive case
... is evidence of a way of reasoning from my evidence that rationally supports a credence different from my own. As I have no reason to believe my way of reasoning is more accurate than my peer’s, I have evidence that my credence would be more accurate if revised in the direction of her credence. This makes it irrational for me to remain at my credence.

Cohen then immediately clarifies that encountering disagreement isn’t really doing much work here: “simply recognizing a rational credence different from my own is enough to undermine the rationality of my credence.”

The crucial assumption here is Cohen’s claim that “I have no reason to believe my way of reasoning is more accurate than my peer’s”. Why would epistemic permissivism commit me to this conclusion? Cohen doesn’t say. (I’ve quoted the entirety of his argument). He must think something like the following is sound:

\[\text{[ALPHA]} \ \text{I can believe you and I are equally rational in our reasoning about P only if I have no reason to believe my way of reasoning is more accurate than yours.} \]

But it’s not clear why [ALPHA] must be true. And defenders of permissivism would no doubt dispute [ALPHA]. Consider, for instance, a version of permissivism recently defended by Miriam Schoenfield. She proposes that there are a plurality of fully rational epistemic standards. These standards are, roughly speaking, functions from bodies of evidence to doxastic states. In some cases, all these standards prescribe the same attitude toward P. These are non-permissive cases. But in some cases, different standards will prescribe different attitudes toward P, given a single body of evidence E. These are permissive cases.

Schoenfield proposes that different people may each coherently think these standards are all equally rational, but they might also consider their own epistemic standards to be more accurate than any other, as assessed by their own epistemic standards. That is: as assessed by Standard A, Standard A comes out to be most accurate; as assessed by Standard B, Standard B comes out to be most accurate, and so on. And: the only way to epistemically assess anything is from the perspective of a specific epistemic standard.

We’ll soon examine how it can make sense to think that these standards are all “equally rational”, but for now I’ll just point out that [ALPHA] is straightforwardly rendered false on this understanding of epistemic permissivism. As stipulated, I should recognize that we’ve both adopted equally rational epistemic standards, but even so I will have reason to think my way of reasoning is more accurate than yours. Namely: when I assess our ways of reasoning using my own epistemic standards, I get the result that my way of reasoning is more accurate. On Schoenfield’s proposal, I can think that we’re both fully rational while

58Ibid., p. 103.
also thinking that my own conclusion is more accurate. This leaves no rational pressure to conciliate, thus blocking Cohen’s argument.

But for Schoenfield’s proposal to work, we must not only think we each are working from fully rational epistemic standards; we must also think that, from the perspective of our own epistemic standard, our own standards are more accurate than the others. How is this combination of beliefs consistent? Shouldn’t I conclude my standards are more rational than yours the moment I see (from the perspective of my standards) that they are more accurate than yours?

Unfortunately, Schoenfield does not say much about this. Here is the entirety of her explanation:

there is a sense in which Sally thinks of alternative standards as “just as good” as her own and a sense in which she does not. For Sally thinks that although her standards are more truth conducive than some alternative, other standards may be just as rational. We might cash this out by thinking that the principles of rationality are going to be general: they will be principles about what kinds of considerations count in favor of what kinds of hypotheses. But these sorts of general considerations are not sufficiently robust to pin down a unique doxastic state given by any body of evidence. So even if Sally and her friend both conform to these principles, their standards may differ with regard to how exactly they weigh the different considerations and thus, in any given case, Sally and her friend might rationally come to different conclusions.\(^{60}\)

Here’s an attempt to explain what Schoenfield has in mind here. She seems to be imagining that there is a single set of fully rational epistemic principles, but in order to apply these principles to get results in particular cases, we must supply parameters which determine how different considerations are weighed. Because of this, we get different epistemic standards—each corresponds to a different way of supplying parameters to the principles. Once you supply specific parameters, the principles will deliver the result that those parameters produce the most accurate results. But the principles deliver the same self-affirmation for different parameters.

That’s how we can coherently maintain that different epistemic standards are “equally rational”, while also maintaining that our own epistemic standards are the most accurate of all. We see the standards are equally rational because they’re all coming from the same rational principles. We see our own standards as most accurate because the principles, combined with our parameters, will tell us that our own parameters produce the most accurate results.

Schoenfield must have it that a poor assessment of the accuracy of someone’s belief is consistent with a positive assessment of that person’s rationality. We can get some support

\(^{60}\)Ibid., p. 202.
for this through a variant of the New Evil Demon thought experiment. Suppose you had a psychological duplicate who receives (subjectively speaking) the same stimuli as you, and who also ends up forming the same beliefs as you. And suppose you are in a good environment, and the beliefs you form are mostly true. Your duplicate, unfortunately, is under the control of an Evil Demon, who ensures your duplicate’s beliefs are mostly false. Our intuition is that both of you are equivalent in rationality: neither you nor your duplicate is any more or less rational than the other. This reveals that our assessments of rationality need not depend at all on whether we think a person’s beliefs are accurate. If two people both apply the same principles in the same way forming the same beliefs, we judge that they’re equally rational—even if one person’s beliefs are mostly true, while the other’s are mostly false.

But it’s not entirely clear how to apply this insight to Schoenfield’s suggestion. To start: two people with different epistemic standards may share the same general epistemic principles, but they are not applying those principles in the same way. And it seems natural to think there are correct and incorrect ways of applying the principles. Suppose we’ve adopted different epistemic standards. Schoenfield says that, by my lights, my weighting parameters are the most accurate, while by your lights, your parameters are the most accurate. Should I judge your rationality according how well you align with my standards, or should I judge it according to how well you are performing with respect to your own standards? Here, matters are not clear. The New Evil Demon thought experiment shows that there is an important subjective dimension to epistemic rationality, so I can judge you to be fully rational even if you get many important matters wrong. But there clearly must also be an objective dimension of epistemic rationality, which renders you less than fully rational when you get certain things wrong. For instance: we deem irrational someone who consistently affirms the consequent—even if he is somehow unable, by his own lights, to tell that such reasoning is defective.

Now Schoenfield proposes that epistemic standards differ in how they “weigh” various epistemic considerations. Should I judge these differences in the subjective sense (so I can think you’re fully rational even though I think you got the weightings wrong), or in the objective sense (so I should think you’re less than fully rational because you got the weightings wrong)? It’s hard to tell without additional detail.

All this is to say that I can’t be certain that Schoenfield’s suggestion can’t work, and it’s not clear how to proceed without more details about the specific principles and weighting parameters Schoenfield has in mind. So I’m willing to grant, tentatively, that her theory of permissiveness is sufficiently coherent so it undermines Cohen’s argument—or at least it has shifted the burden of proof. We should now ask whether the proposal helps us to resolve our puzzle.

I think it’s clear that the proposal helps us to avoid conciliation. On Schoenfield’s suggestion, when we disagree in a permissive case, I can think my own credence is fully rational,

and I can think my credence is more accurate than yours. We’ve been assuming that I can have reason to adjust my beliefs only if I think my beliefs are irrational or inaccurate. But on Schoenfield’s permissive theory, in a disagreement I can coherently and rationally think my beliefs are both fully rational and more accurate than my peer’s, so I’ll have no reason to adjust my beliefs.62

But Schoenfield’s suggestion doesn’t avoid demotion. Recall our account of peerhood:

\textbf{[PEERHOOD]} My confidence that I should count you as my epistemic peer with respect to P should be equal to my confidence that it’s unlikely for: 1) my total evidence relevant to P to be ‘much’ less (or more) misleading than yours or 2) my chance of making a mistake in evaluating that evidence to be ‘much’ less (or more) than yours.

Note that [PEERHOOD] has two clauses. The second has to do with our chances of making an evidence assessment error. The first, however, has to do with whether our evidence is misleading or not. Now, we’ve been assuming all along that if two people have the same evidence, the degree to which that evidence will be misleading will be the same for both of them. But this no longer holds on Schoenfield’s proposal.

To see why, suppose I’ve concluded P on E and you’ve concluded $\neg P$ on E, and that this is a permissive case in Schoenfield’s sense: P is the correct conclusion on E given my epistemic standards, but $\neg P$ is the correct conclusion on E given your epistemic standards. Suppose we both recognize both our standards as fully rational, and we both think we both correctly evaluated the evidence, on our standards.

On Schoenfield’s proposal, I’m going to think my reasoning is more likely to deliver accurate results than yours, and this is where we run into trouble. If I think my conclusion is likely to be accurate, then by the [ANTI-AKRATIC PRINCIPLE] I must think E is unlikely to be misleading—at least for me. But what should I think about you? Well, you adhere to different epistemic standards than me. And on your epistemic standards, E points to $\neg P$. By hypothesis, I think that my standards are more accurate than yours, so I will think your conclusion is unlikely to be true. So I must conclude that E is unlikely to be misleading for me, but E is likely to be misleading for you!

On Schoenfield’s proposal, whether or not a piece of evidence is misleading must be determined relative to a particular set of epistemic standards. \textit{And}, in a permissive case where the two parties fully rationally conclude differently on P, the two parties must also each conclude that the evidence is unlikely to be misleading to themselves, but the evidence is likely to be misleading for the other party. This means the two parties cannot count one another as epistemic peers.

So Schoenfield’s account doesn’t get us quite all we want in a resolution of the puzzle. It allows us to avoid conciliation. It allows us to avoid concluding that those who disagree with us are less rational than us. But it forces us to demote disagreeing parties. We won’t

62Here I’m setting aside my previous worries about whether we can be rationally certain that we’re fully rational and that our case is strongly permissive.
have to think those who disagree are less rational than we are. But we’ll have to think the evidence is likely to mislead them, and not likely to mislead us. That makes them, overall, less epistemically capable than we are to assess the truth of P.

Is this an acceptable outcome? That is: is this sort of Demotion a Bullet we can bite? Consider the overall perspective that Schoenfield’s proposal provides. I live in a world filled with inquirers, with many who are my rational equals. Each of us has adopted one of several equally rational epistemic standards, and we have access to the same evidence base. On most matters (the non-controversial ones), we mostly end up happily arriving at truths. But on matters of [CONTROVERSY], things aren’t so great. On the one hand, I and my peers are fortunate; we were graced with epistemic standards which render our evidence non-misleading, so we consistently get the controversial questions right. Unfortunately, those who disagree with us are not so fortunate. They’ve been saddled with epistemic standards which, while no less rational than my own, render misleading all the shared evidence which reliably leads me (and my peers) to the truth. So even though these people are just as good at I am at applying their epistemic standards, and even though they have all the same evidence that I have, they’re frequently led to error on matters of [CONTROVERSY].

Perhaps whether this picture is attractive will depend on what epistemic standards you have. But it probably should also depend on what other options there are.

1.10 Conclusion

In the bulk of this chapter, I’ve presented and developed an argument for a dilemma: either we must conciliate on a given matter of persistent and widespread controversy, or we must demote those who disagree with us. I’ve also argued that demotion is indefensible or unattractive. I’ve assumed without much argument that conciliation is not a viable option. So this leaves us with a puzzle: to explain how we can coherently retain our views on controversial topics while avoiding the conclusion that those who disagree are our intellectual inferiors. I’ve tried to show that this puzzle is not easily resolved.

The most promising approach seems to be to accept some sort of epistemic permissiveness, the view that some bodies of evidence permit multiple fully rational responses. This sort of theory has the greatest hope of explaining how we can rationally think ourselves and others to be equally rational, yet also simultaneously have the option of rationally retaining high confidence in our own views. I’ve argued that one recently proposed permissive account, while giving us much of what we want, still forces us to demote those who disagree with us.

Perhaps a different theory of epistemic permissiveness can better resolve our puzzle. Start with the thought that persistent and widespread controversy over P is indication that humans, in general, lack the cognitive ability to reliably assess the evidence relevant to P. This gives us a clear sense in which all human subjects have sufficient reason to suspend judgment about whether their own cognitive faculties can reliably assess the evidence concerning a controversial P. Nevertheless, a fact about humans taken generally need not
make it extremely unlikely that any particular human lacks a cognitive capacity suitable for determining whether P. A sizable proportion of us may, in fact, have competence for investigating P, and the controversy exists because of others who lack competence.

Our discussion in this chapter has revealed the difficulties one faces if one tries to find reasons for claiming that he or she is more likely than the opposition to be competent with respect to P. But perhaps under these conditions it can nevertheless be rational for subjects to wager that their cognitive capacities are cogent—to assume their take on P is correct and to simply set aside the doubts about their competence that are raised by the controversy.

This view is a form of epistemic permissiveness. From an omniscient perspective, only one side can be competent with respect to P, so in this sense disputing subjects cannot both be fully rational. But from a subjective point of view, both sides are in a symmetrical epistemic position, in which neither side has non-circular reason to think they’re more likely to be competent than the other. Both sides, then, may fully rationally wager that they are competent. I develop this view in Chapter 3.