The Helen Fellowship

The Helen Fellowship is a unique opportunity for women to spend a year immersed in teaching and research at the American Museum of Natural History in New York City. The Fellows will split their time between teaching and a research residency within one of the Museum’s science divisions.

The Helen Fellows contribute to curriculum and teach within BridgeUp: STEM, a computational science program for high-school aged young women and middle-school aged boys and girls from New York City. Each Fellow also conducts independent computational research under the guidance of a museum scientist whose work aligns closely with the Fellow’s interests and experience.

Who can be a Helen Fellow?
Women who have completed Bachelors or graduate degrees in the sciences, computer science, or related fields by June 2017 are encouraged to apply. The Helen Fellowship is a full-time commitment for one year beginning in the summer of 2017. This fellowship is non-renewable.

When do I apply?
Applications are due January 20th, 2017.

Are there benefits?
Fellows will receive an annual salary of $70,000 plus generous benefits, and funding is available for expenses such as conference travel and research equipment and supplies.

Tell me more!
More information can be found by searching our website and the broader internet for your topic of interest at AMNH.

Any questions?
Email bridgeup@amnh.org

“An out-of-this world opportunity to immerse yourself at the intersection of programming and science. On top of it all, you also get to teach an amazing group of girls and contribute to meaningful work at AMNH.”

The Helen Fellowship is made possible by a generous grant from The Helen Gurley Brown Trust.
An unparalleled experience in the world of research. For a year I get to work on a biological problem I am invested in, while at the same time inspiring (and being inspired by!) the future generations of women in science and tech. Unreal!

Emily Carlson worked with Dr. Rebecca Oppenheimer. Her research included data collection at Palomar, data processing at AMNH, and database construction. She is working on a paper that will present the newly discovered binary stars from the Project 1640 survey. She holds a Visiting Scientist position at AMNH with Dr. Rebecca Oppenheimer. Emily has just embarked on a Ph.D. in Electrical Engineering at Tufts. She is joining Dr. Tom Vandervelde’s Renewable Energy and Applied Photonics Lab, and will be focusing on fabricating metamaterials to improve solar cell efficiency. She has been awarded a Provost Fellowship, a unique and prestigious award which recognizes the most promising doctoral applicants to schools across the university.

Jillian Bellovary worked with Dr. Mordecai Mac Low, investigating whether migration traps exist within the accretion disks of supermassive black holes (SMBHs), and if so whether they are conducive to the formation of intermediate mass black holes. She also investigated the repercussions of this phenomenon for gravitational wave detection. Jillian’s research has been published and presented in several conferences. Jillian is an Assistant Professor of Physics at Queensborough Community College.

Jordan Koch worked with Dr. Brian Smith to develop models of speciation across a landscape. She organized a cohesive pipeline of Python scripts to compare simulated evolutionary patterns to empirical data on bird speciation. She also helped build a database containing genomic data of all described bird species. She presented this work at the Evolution meeting in Austin, Texas. She now resides in Norwich, England as a computational biology researcher at the John Innes Centre and works remotely with Dr. Smith.

Grace Newman worked with Dr. Ward Wheeler. She implemented a software suite to construct and analyze phylogenetic trees from both genetic and anthropological data. During her time at the museum, she focused on evolutionary distance algorithms. She is now a visiting scientist in Dr. Wheeler’s lab focusing on GPU computing, and is working full time in Silicon Valley as a Server Engineer at Syapse, a precision medicine software company.

Mali’o Kodis worked with Dr. Mary Blair and Dr. Eleanor Sterling. She completed a comprehensive review of biocultural conservation modeling techniques, contributing towards understanding the complex interactions between humans and their changing environment. Mali’o built an ecological niche model to determine prime prospective habitat for a key agricultural crop (taro, Colocasia esculenta) in Pacific Island communities threatened by climate change. Mali’o is currently working on a manuscript for this work, which will be submitted to the journal “Ecological Modeling.”

The Helen Fellowship is made possible by a generous grant from The Helen Gurley Brown Trust