To contact professors:

paslani@nyu.edu: Adjunct Professor, Civil and Urban Engineering
Office hours: by appointment. (212.545.9320 Mobile)
mbo266@nyu.edu
Office hours: by appointment. Prefer Mondays (use Google Hangouts)

Course Pre-requisites CE-GY 8243, or permission of instructor.
Class assumes fundamental understanding of CEPM concepts such as CE programs, projects and process. Familiarity with engineering management bodies of knowledge such as PMI BoK R5, ASCE guidance on project delivery (MOP73, 2012), AACE guidance on project costs and schedule and Construction Specifications Institute practice manual.

Course Description Project management is the continuous and disciplined application of knowledge, skills, tools, and techniques by an organizational component to the activities of a project within a framework of processes and plans to successfully deliver the desired strategic outcomes, meet objectives and fulfill requirements for the project in a predictable, controllable, and reliable manner. The expectation is that this application will result in the development and implementation of an optimized control solution set that in the practitioner’s judgment represents the best trade-off between (performance/likelihood of success in predictable and controlled project delivery) and (required resources) thereby providing reasonable assurance that the project as delivered will meet sponsor/stakeholder expectations.

Course Objectives
- Familiarize student with the engineering theory, business case and economic rationale for the application of project controls in Civil infrastructure projects and programs.
- Provide student with the fundamental knowledge of and familiarity with the practices of civil engineering/project management processes and communication.
- Familiarize student with the engineering theory for predictability as a basis for control of project implementation and delivery. (Project /Package layer, variable specific.)
- Provide student with fundamental knowledge of management control and variable specific tools.
- Familiarize student with the engineering theory, business case and economic rationale for the development of control solutions and their formal communication in project management plans and subplans.

Course Structure
[For example, lectures, discussion, recitations, labs, course readings, case studies, fieldwork, etc.]

Readings
The required texts for the course are: (All are available online thru NYU)
- Construction Extension to the PMBOK® Guide. Project Management Institute, Inc. (PMI). Online version available at:
- CPM Scheduling for Construction - Best Practices and Guidelines. Project Management Institute, Inc. (PMI), Carson, Christopher Oakander, Peter Relyea, Craig. (2014). Online version available at:
New York University Tandon School of Engineering - Civil and Urban Engineering
CE – GY 8363 Project Control - Fall 2017

Optional and recommended texts are:

The course will also use the engineering resources of RiskEngineering.org and ASCE.org as directed by the instructors.

Course requirements
[Description of expected course participation - for example, reading before class, class participation, attendance, assignments, exams, other requirements]

[Name of Assignment or Exam 1] [Date due] [Percentage of final grade]
[Brief description of assignment/exam, including number of pages, purpose, content, format required]

[Name of Assignment or Exam 2] [Date due] [Percentage of final grade]
[Brief description of assignment/exam, including number of pages, purpose, content, format required]

[Name of Assignment or Exam 3] [Date due] [Percentage of final grade]
[Brief description of assignment/exam, including number of pages, purpose, content, format required]
Part I: [Topic of first part of the course, if applicable]

[Date] Topic of Class 1
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 2
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 3
• [Reading 1]
• [Reading 2]
• [Name of assignment that is due]

Part II: [Topic of second part of the course, if applicable]

[Date] Topic of Class 4
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 5
• [Reading 1]
• [Reading 2]
• [Reading 3]

[Date] Topic of Class 6
• [Reading 1]
• [Reading 2]
• [Name of assignment that is due]

[Date] [Exam]

[Date] Topic of Class 7
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 8
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 9
• [Reading 1]
• [Reading 2]
New York University Tandon School of Engineering - Civil and Urban Engineering
CE – GY 8363 Project Control - Fall 2017

[Date] Topic of Class 10
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 11
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 12
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 13
• [Reading 1]
• [Reading 2]

[Date] Topic of Class 14
• [Reading 1]
• [Reading 2]

[Date] [Final Assignment Due]

Moses Center Statement of Disability
If you are student with a disability who is requesting accommodations, please contact New York University’s Moses Center for Students with Disabilities (CSD) at 212-998-4980 or mosescsd@nyu.edu. You must be registered with CSD to receive accommodations. Information about the Moses Center can be found at www.nyu.edu/csd. The Moses Center is located at 726 Broadway on the 2nd floor.

NYU School of Engineering Policies and Procedures on Academic Misconduct

A. Introduction: The School of Engineering encourages academic excellence in an environment that promotes honesty, integrity, and fairness, and students at the School of Engineering are expected to exhibit those qualities in their academic work. It is through the process of submitting their own work and receiving honest feedback on that work that students may progress academically. Any act of academic dishonesty is seen as an attack upon the School and will not be tolerated. Furthermore, those who breach the School’s rules on academic integrity will be sanctioned under this Policy. Students are responsible for familiarizing themselves with the School’s Policy on Academic Misconduct.

B. Definition: Academic dishonesty may include misrepresentation, deception, dishonesty, or any act of falsification committed by a student to influence a grade or other academic evaluation. Academic dishonesty also includes intentionally damaging the academic work of others or assisting other students in acts of dishonesty. Common examples of academically dishonest behavior include, but are not limited to, the following:
New York University Tandon School of Engineering - Civil and Urban Engineering
CE – GY 8363 Project Control - Fall 2017

1. Cheating: intentionally using or attempting to use unauthorized notes, books, electronic media, or electronic communications in an exam; talking with fellow students or looking at another person’s work during an exam; submitting work prepared in advance for an in-class examination; having someone take an exam for you or taking an exam for someone else; violating other rules governing the administration of examinations.

2. Fabrication: including but not limited to, falsifying experimental data and/or citations.

3. Plagiarism: intentionally or knowingly representing the words or ideas of another as one’s own in any academic exercise; failure to attribute direct quotations, paraphrases, or borrowed facts or information.

4. Unauthorized collaboration: working together on work that was meant to be done individually.

5. Duplicating work: presenting for grading the same work for more than one project or in more than one class, unless express and prior permission has been received from the course instructor(s) or research adviser involved.

6. Forgery: altering any academic document, including, but not limited to, academic records, admissions materials, or medical excuses.