A Result in Complex Series Expansion

Lai Zeng Chao (Jason) <zcl210@nyu.edu>

October 5, 2017

Abstract

In this presentation, we aim to give a theoretically interesting result that could have many applications. To motivate the discussion, observe the following identity

\[\sum_{n=0}^{\infty} p(n)z^n = q(z)(1 - z)^{-(k+1)} \]

(†)

Where \(p(n) \) and \(q(z) \) are both polynomials of degree \(k \). At first sight, one might be misled about the difficulty of this problem since we have polynomials of the same order on both sides. However, a more careful inspection reveals that on the one hand \(p \) varies with the index \(n \), and on the other hand \(q \) varies with a complex variable \(z \). Also the LHS has \(z \) to the power \(n \) whereas the RHS has \((1 - z) \) to the power \(-(k+1) \).

Significance of Result

If proven true, (†) says that given an arbitrary complex power series with coefficients \(c_n = p(n) \) we can always find a \(q(z) \) such that the identity holds. In fact our proof shows that this implication goes both way. We posit that any choice of \(p(n) \) uniquely determines a \(q(z) \) such that (†) holds, and vice versa.

Statement of the Problem

Let \(p \) be a polynomial of degree \(k > 0 \). Prove that \(\sum p(n)z^n \) has radius of convergence 1 and that there exists a polynomial \(q(z) \) of degree \(k \) such that

\[\sum_{n=0}^{\infty} p(n)z^n = q(z)(1 - z)^{-(k+1)} \quad (|z| < 1). \]

Details of the Proof

Proof. We first note that any polynomial \(p \) of degree \(k \) can be written as

\[p = a_0 + a_1n + \cdots + a_kn^k \]

Then we can apply the ratio test to the series \(\sum p(n)z^n \) since

\[
\frac{p(n+1)z^{n+1}}{p(n)z^n} = \frac{a_0 + a_1(n+1) + \cdots + a_k(n+1)^k}{a_0 + a_1n + \cdots + a_kn^k} \cdot \frac{z}{z} \\
= \frac{a_0(n+1)^k + a_1(n+1)^{k+1} + \cdots + a_k}{a_0(n+1)^k + a_1(n+1)^{k+1} + \cdots + a_k} \cdot \frac{z}{z}
\]

1
Now as $n \to \infty$, every term in the fraction vanishes except for a_k in the numerator and $a_k n^k (n+1)^{-k}$, which converges to a_k. This is evident from elementary limit rules since the vanishing terms all have the form of a rational function whose denominator is of higher order in n than the numerator.

$$\lim_{n \to \infty} \left| \frac{p(n+1)z^{n+1}}{p(n)z^n} \right| = |z|$$

Therefore we conclude $\sum p(n)z^n$ has radius of convergence 1.

Existence of the Polynomial $q(z)$

We first find a series expansion for $(1 - z)^{-(k+1)}$

We successively differentiate $f = (1 - z)^{-1}$

$$f' = (1 - z)^{-2}$$
$$f'' = 2(1 - z)^{-3}$$
$$f^{(3)} = 3 \cdot 2(1 - z)^{-4}$$
$$\vdots$$
$$f^k = k!(1 - z)^{-(k+1)}$$

Then since we can expand f in its series form and obtain the series expression for f^k, we have

$$k!(1 - z)^{-(k+1)} = f^k = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1)z^{n-k}$$

$$\implies (1 - z)^{-(k+1)} = \frac{1}{k!} \sum_{n=k}^{\infty} \underbrace{n(n-1) \cdots (n-k+1)}_{\text{k terms}} z^{n-k}$$

$$= \frac{1}{k!} \sum_{n=0}^{\infty} (n+k)(n+k-1) \cdots (n+1)z^n$$

$$= \frac{1}{k!} \sum_{n=0}^{\infty} (n^k + c_k n^{k-1} + \cdots + c_1 n + c_0) z^n$$

And we can express this as a sum of convergent series because for $|z| < 1$ the above series is convergent

$$(1 - z)^{-(k+1)} = \frac{c_0}{k!} \sum_{n=0}^{\infty} z^n + \cdots + \frac{c_{k-j}}{k!} \sum_{n=0}^{\infty} n^{k-j} z^n + \cdots + \frac{1}{k!} \sum_{n=0}^{\infty} n^k z^n \quad (*)$$

Next we express the left hand sum as

$$\sum_{n=0}^{\infty} p(n)z^n = \sum_{n=0}^{\infty} (a_0 + \cdots + a_k n^k) z^n$$
Since for $|z| < 1$ we have proven that this series converges, we can write it as a sum of convergent series with coefficients $a_i n^i$ for $i \in (0, \ldots, k)$

$$
\sum_{n=0}^{\infty} p(n)z^n = a_0 \sum_{n=0}^{\infty} z^n + \cdots + a_k \sum_{n=0}^{\infty} n^k z^n
$$

Then define a polynomial $q(z)$ of order k in z by the following expression

$$
\frac{q(z)}{(1 - z)^{-(k+1)}} = \frac{b_0}{1 - z} + \frac{b_1}{(1 - z)^2} + \cdots + \frac{b_k}{(1 - z)^{-(k+1)}} \tag{**}
$$

Evidently $q(z)$ is of order k because by multiplying through $(1 - z)^{-(k+1)}$ we find the RHS’s highest term is $b_0(1 - z)^k$. Therefore we fix the polynomial $q(z)$ by specifying the parameters b_i for $i \in (0, \ldots, k)$.

Fitting the Parameters b_i Next we use (*) to obtain a series expression for (**)

$$(**)=b_0 \sum_{n=0}^{\infty} z^n + \cdots + b_i \left(\frac{c_0}{i!} \sum_{n=0}^{\infty} z^n + \cdots + \frac{c_i-j}{i!} \sum_{n=0}^{\infty} n^{i-j} z^n + \cdots + \frac{1}{i!} \sum_{n=0}^{\infty} n^i z^n \right)

+ \cdots + b_k \left(\frac{c_0}{k!} \sum_{n=0}^{\infty} z^n + \cdots + \frac{c_k-j}{k!} \sum_{n=0}^{\infty} n^{k-j} z^n + \cdots + \frac{1}{k!} \sum_{n=0}^{\infty} n^k z^n \right)

$$

Then we have acquired a system of $k + 1$ linear equations in $k + 1$ unknowns b_m for $m \in (0, \ldots, k)$ since we can group (**)

by

$$
a_0 \sum_{n=0}^{\infty} z^n = b_0 \sum_{n=0}^{\infty} z^n + \cdots + b_i \frac{c_0}{i!} \sum_{n=0}^{\infty} z^n + \cdots + b_k \frac{c_0}{k!} \sum_{n=0}^{\infty} z^n

\vdots

a_k \sum_{n=0}^{\infty} n^k z^n = \frac{b_k}{k!} \sum_{n=0}^{\infty} n^k z^n

\Rightarrow a_0 = b_0 + \cdots + b_i \frac{c_0}{i!} + \cdots + b_k \frac{c_0}{k!}

\vdots

a_k = \frac{b_k}{k!}

$$

Which has a solution since we can back substitute through $b_k = k! a_k$. Whence we conclude that there exists a k-th degree polynomial $q(z)$ satisfying $q(z)(1 - z)^{-(k+1)} = \sum_{n=0}^{\infty} p(n)z^n$ for any $p(n)$ of order $k!$