Abstract

What is the nature of agenda control in legislatures? Previous empirical tests of committee gatekeeping have relied exclusively on floor actions, which are likely to misrepresent the level of partisan gatekeeping and conflate positive and negative agenda control. I leverage a novel dataset on interest group positions taken on state bills to construct a test of gatekeeping that avoids those problems. Specifically, interest groups in Iowa, Nebraska, and Wisconsin record positions on bills, some of which never receive a floor vote. This permits me to obtain estimates of status quo locations for legislation that did and did not emerge from committee. Unsurprisingly, the analysis shows that many bills are introduced even though they are very likely to die in committee, suggesting either uncertainty or pure position-taking. Furthermore, comparing the distributions of status quo positions, I find evidence that favors partisan gatekeeping in some chambers (Iowa House, Wisconsin Assembly) or, is equally supportive of partisan and non-partisan hypotheses (Iowa Senate, Wisconsin Senate, and Nebraska Legislature).
1 Introduction

What is the nature of agenda control in legislatures? Committees and other institutions shape the legislative agenda by promoting some bills for consideration and blocking others, and thereby help determine which bills are ultimately enacted into law. However, it remains an open question how committees use their procedural rights to exercise gatekeeping. Does the majority party act as a procedural cartel (Cox and McCubbins 2005; 2007) to prevent those bills from coming to the floor where a vote between the proposal and the status quo policy would find a majority of the majority party on the losing side? Or, do committees screen out those bills that are unlikely to find the support of institutional veto players (e.g., Krehbiel 1998; Brady and Volden 2006; Crombez, Groseclose, and Krehbiel 2005, 2006)?

Previous empirical tests of committee gatekeeping have been limited to floor actions. However, these are likely to conflate positive and negative agenda control or otherwise misrepresent the level of partisan gatekeeping. In the following, I use both floor and pre-floor data from the state legislatures of Iowa, Nebraska, and Wisconsin for a direct test of committee gatekeeping. The state legislatures of Iowa, Nebraska, and Wisconsin require or permit lobbyists to declare the position they are communicating towards legislators on behalf of their principals at different times in the legislative process. Treating interest group positions as final passage votes on bill versions allows me to estimate the ideological positions of interest groups and legislators in the same space, using an item-response model. Further, interest group positions on bills that die in committee and those that are reported to the floor allow me to estimate the cutpoints for both types of bills.

Under different assumptions about the location of bills, I exploit these cutpoint estimates
to infer the status quo position of the introduced bills. This permits a direct measure of partisan gatekeeping, the proportion of bills that are actually blocked out of the bills that are predicted to be blocked, which is not confounded by including positive agenda control. Unsurprisingly, the analysis shows that many bills are introduced even though they are very likely to die in committee, suggesting either uncertainty or pure position-taking. Furthermore, comparing the distributions of status quo positions, I find evidence that favors partisan gatekeeping in some chambers (Iowa House, Wisconsin Assembly) or, is equally supportive of partisan and non-partisan hypotheses (Iowa Senate, Wisconsin Senate, and Nebraska Legislature).

2 Background

The research on legislative agenda control is part of a broader set of questions about the role of parties in lawmaking in American politics. On the one side are claims by partisan theories that the majority party leadership, especially in the U.S. House of Representatives affects legislative outcomes, either by applying pressure to ensure party-line voting (Aldrich 1995), or by acting as a procedural cartel (Cox and McCubbins 2005, 2007).1 In the latter theory’s view, the majority party’s agents use negative agenda control or gatekeeping especially through the pre-floor screening of bills in committees, to keep those bills off the agenda that would go against the preferences of a majority of members of their party.2 More precisely, the party cartel theory predicts that bills with status quo positions in the majority party

1See Krehbiel, Meirowitz, and Wiseman (2015) for a theory that also incorporates opportunities for the minority party to influence lawmaking.

2In the following, I concentrate on the party cartel theory, as it emphasizes the importance of gatekeeping.
The *blockout zone* should be blocked from the floor by the committee to which it was referred (Cox and McCubbins 2005, 43).³

On the other side, the *nonpartisan* pivotal politics theory (Krehbiel 1998) emphasizes the “primitive” preferences of legislators and institutional veto players.⁴ The theory predicts no policy change for bills with status quo policies in the gridlock interval.⁵ While a strict interpretation of the theory allows no role for gatekeeping since proposals for which the status quo is in the *gridlock interval* will never be proposed (Krehbiel, Meirowitz, and Woon 2005, 256), Crombez, Groseclose, and Krehbiel (2005) suggest that ostensible gatekeeping is consistent with committees anticipating a gridlock interval.⁶ In the following, I will test the hypothesis (consistent with the pivotal politics model) that committees will block those bills with status quo policies in the gridlock interval. For an illustration, Figure 1 shows each theory’s censored interval, as well as the predicted bill position as a function of the status quo policy and the preferences of key actors.

Previous empirical tests of gatekeeping have been limited by the absence of pre-floor estimates of bills and status quo policies, especially for bills that die in committee.⁷ Instead, many studies (e.g., Cox and McCubbins 2005; Gailmard and Jenkins 2007; Cox, Kousser, and McCubbins; Jackman 2014) have tested theories of negative agenda control using floor-

³The *majority party blockout zone* extends from the floor median to a position that has the same distance to the majority party median as the floor median, but is on the other side of the majority party median.

⁴Examples of such institutional veto players are the filibuster pivot, the president, and the veto override pivot (see Brady and Volden 2006) for a similar argument). For examples of hybrid pivot-and-party models, see e.g., Cox and McCubbins (2005, 177-181), Chiou and Rothenberg (2003), or Peress (2013).

⁵Krehbiel (1998, 35) defines gridlock as the absence of policy change despite the existence of a majority that favors a change. The gridlock interval is determined by the configuration of the pivotal actors.

⁶In the same vein, Kypriotis’ (2013) strong majoritarian version of the Committee Bill Reporting model assumes that committees in the House will act as though they have the same preferences as the chamber median. According to Crombez, Groseclose, and Krehbiel (2005), ostensible gatekeeping is also consistent with an efficient distribution of the workload, or uncertainty.

⁷See Richman (2011), Peress (2013), and Woon and Cook (2015) for exceptions to this.
Note: The panels plot predicted bill outcomes as a function of the status quo and the preferences of key actors for the party cartel (left) and the pivotal politics theory (right). They also show the censored intervals for which no policy change is expected. The party cartel theory predicts that committee chairs (or other agents of the majority party) will prevent bills with status quo policies in the majority party blockout zone from coming to the floor and receiving a final passage vote. The blockout zone [2D-m, m] is determined by the median (m) and the median of the majority party (D). The right panel shows an example of a gridlock interval taken from Krehbiel (1998, 22). Here, the gridlock interval [p, f] is determined by the arrangement of the presidential pivot (p) and the filibuster pivot (f). A gatekeeping hypothesis consistent with the pivotal politics theory is that bills with status quo policies is in the gridlock interval will be blocked by committees (since they will ultimately fail to pass).

based measures, such as the majority and minority party roll counts or roll rates. The results from these studies have tended to find evidence supporting the party cartel theory. However, using low majority roll rates as evidence for partisan gatekeeping is problematic for several reasons. First, a credible test of partisan gatekeeping requires a baseline roll rate that could occur with behaviorally inconsequential parties (Krehbiel 2007). Second, the previously used roll rates conflate negative and positive agenda power (Jenkins and Monroe 2015). A more general problem with floor actions is that they can only provide an upper bound (the “fingerprints”) of the actual level of negative agenda control, because effective

8 The majority party is rolled if a bill or motion passes against the opposition of a majority of its members. Low majority party roll rates are taken as evidence in favor of partisan gatekeeping.

9 For example, Cox and McCubbins (2005, Ch. 5) find low majority party roll rates and relatively higher minority party roll rates in the House, and somewhat higher majority party roll rates in the Senate. Further, Gailmard and Jenkins (2007) show that when excluding nominations, the Senate shows similar majority roll rates to the House. Cox, Kousser and McCubbins (2010) investigate the effects of institutional changes on the majority and minority roll rates, as well as the direction of policy change. Moreover, Jackman (2014) leverages state legislative variation in majoritarian rules and preference heterogeneity in the majority party to determine how these affect majority rolls.
negative agenda control would imply that agents of the majority party are able to veto legislation at the pre-floor stage (Gailmard and Jenkins 2007; Jenkins and Monroe 2015).

A second line of research on negative agenda setting has employed cutpoints of final passage votes estimated using item-response models or W-NOMINATE scaling (Poole et al. 2011), resulting in mixed findings with respect to the party cartel theory (Krehbiel, Meirowitz, and Woon 2005; Clinton 2007; Stiglitz and Weingast 2010).\(^{10}\) In addition to the “fingerprints” critique above, cutpoint analyses have to address at least two other challenges. First, the ideal point estimates generated by an endogenous agenda conforming to either the pivot or cartel theory may be too imprecisely estimated to distinguish between them (Clinton 2007).\(^ {11}\) Second, a convincing test between competing hypotheses should include not just the majority rolls, but also successful blocks by the majority party (Krehbiel, Meirowitz, and Woon 2005; Jenkins and Monroe 2015).

3 A Direct Test of Committee Gatekeeping

I develop a direct test of committee gatekeeping that leverages data on interest group positions to address the challenges described above. In particular, interest group positions on two different types of bills, those that die in committee and those that are reported out, allow me to estimate the cutpoints for both types of bills. I combine these cutpoints es-

\(^{10}\)Krehbiel, Meirowitz, and Woon (2005) derive a set of intervals for which observed cutpoints are consistent or inconsistent with either theory and test the theories on final passage votes in the United States Senate. While the number of votes with cutpoints in the nonpartisan model’s distinct gridlock interval is larger than it is for its competitor, the authors argue that this may be due to the larger size of the interval and therefore a greater exposure to falsification. Adjusted for exposure, they find that the pivot theory does slightly better than the cartel theory. Clinton (2007) conducts a similar analysis for the House and Senate and finds little evidence for either theory. Stiglitz and Weingast (2010) analyze the U.S. House using both the distribution of cutpoints and the uncertainty of estimates in specific intervals.

\(^{11}\)Hirsch (2011), Clinton (2012), and Krehbiel and Peskowitz (2015) show that this depends on the amount of error that is present in roll call voting.
estimates with assumptions about the location of bill proposals in order to infer the status quo position of the introduced bills. This permits a more direct measure of gatekeeping, the proportion of bills that are actually blocked out of the number of bills that are predicted to be blocked. Critically, unlike roll rates, this measure is not confounded by including positive agenda control (Jenkins and Monroe 2015). Further, it eliminates the need to adjust the test with a hypothetical exposure to bill cutpoints (Krehbiel, Meirowitz, and Woon 2005).12

3.1 Data

Although all 50 states have reporting requirements for state-level lobbyists, disclosure requirements vary substantially by state.13 Current lobbying rules in Iowa, Nebraska, and Wisconsin are unusual in that they require lobbyists to report the bills on which they lobby legislators, as well as the principal on whose behalf they lobby on each bill.14 Moreover, in all three states, these declarations are made available online.

There are also several differences in the reporting requirements. First, lobbyists in Iowa and Nebraska are required to report their principals’ positions, while lobbyists in Wisconsin may leave the position undisclosed.15 Second, the states differ in how quickly lobbyists have to report lobbying activity on bills, and each state has different options for reporting posi-

12In addition, by jointly scaling interest groups and legislators, the interest group positions on bills that are kept off the agenda may reduce the danger that the estimates suffer from the kind of imprecision described by Clinton (2007, 2012).
13For an overview from the National Conference of State Legislatures, see http://www.ncsl.org/research/ethics/50-state-chart-lobbyist-registration-requirements.aspx.
14The rules concerning lobbyists are specified in Iowa Code §68B.36, (and lobbyist rules passed by the legislature) §49-1488 of Nebraska Revised Statutes, and Chapter 13 of the Wisconsin Statutes.
15Between 2003 and 2016, only 16.7% of positions were not disclosed.
tions. Finally, the states differ in how far back in time data is made available online.

I collected and assembled dataset of all lobbyist declarations from Iowa between 2005 and 2016, all statements of activity from Nebraska between 2003 and 2016, and all principal lobbying efforts in Wisconsin between 2003 and 2016. I excluded lobbyist declarations from Iowa from 2003 through 2004, as these do not include information on the lobbyists’ principals and the date when the declaration was made. I also did not include statements of activity from Nebraska or Wisconsin before the 2003 session to maintain a relative balance in the time periods across states. In Wisconsin, I also collected positions registered by legislators and lobbying principals at committee hearings (2003-2016). For all three states, I further collected state legislative roll calls, bill histories, committee memberships and bill (co-)sponsorship data from 2003 through 2016.

I used bill histories and cosponsorship data as sources of gubernatorial positions in Iowa and Wisconsin. First, I used bill (co-)sponsorship data and bill histories to find bills that were introduced on behalf of the governor. Second, I used the bill histories to find bills that were signed (without partial veto) into law, which is likely to reduce the potential for artificially extreme ideal point estimates of the executive (see Treier 2010). Third, I used the bill histories to find bills that were fully vetoed by the governor.

16. For example, in Nebraska, lobbyist activities are only required to be reported once per year. Appendix B provides more details on the reporting requirements in the three states.
17. Whereas records in Iowa before 2005 do not indicate the name of the lobbyist’s client, records in Nebraska are available going back to 2001. In Wisconsin, the current website provides records going back to 2003.
18. In Nebraska, a test of the theories does not require an estimate of the governor, since the veto override requirement (30 votes) is lower than the filibuster override requirement (33 votes). In Iowa, lobbyist registrations are also made on behalf of state agencies and the Governor’s Office.
3.1.1 Combining Declarations with Roll Call Votes

By treating declarations as votes on the passage of a bill, I can estimate the revealed preferences of the lobbyists’ principals and state legislators in the same basic space, using an item-response model. Moreover, lobbyist declarations on bills that are reported out of committee as well as bills that die in committee allow me to estimate the bill cutpoints for both types of bills. Since bills are often amended in the legislative process, matching declarations with final passage votes requires assumptions about which version of a bill a declared position by a principal refers to. In each state, I used the bill histories to determine the dates of successful amendments to identify which version of a bill was current at a particular date. I assume that any successful amendment constitutes a change in the version of a bill.

Further, I assume that any declaration applies to the then-current bill version, and not to previous versions of a bill. In the final step, I constructed the legislator-principal-vote matrix by combining the declarations on bill versions with roll calls votes whenever a bill version is associated with a final passage vote. For bill versions not associated with a roll call vote (for example, because the bill died in committee), I added the declarations associated with the bill version to the matrix as a separate column.

3.2 Inferring Status Quo Positions

In order to infer the status quo positions for proposed bills, I combined cutpoint estimates from votes on bill proposals with different assumptions about the location of the propos-

19 The bill histories identify the date of any legislative action on a bill.
20 I only considered a bill as amended when the amendment has been approved by a floor vote.
21 Appendix C.1 provides additional details on how lobbyist declarations were combined with roll call votes. Appendix C.2, details the procedures for merging or splitting the position-record of principals across sessions of the same state, as well as across states.
als. Since the cutpoint is the position at which a legislator would be indifferent between a proposal and the status quo, the relationship between proposal location (BP), status quo position (SQ), and cutpoint position (CP) is given by $CP = \frac{BP + SQ}{2}$, which can be rewritten as $SQ = 2CP - BP$. Therefore, for any initial bill version with an estimated cutpoint, assuming a proposal location leads to an inferred status quo position. In order to make reasonable assumptions about the location of bill proposals, I employ information about the (co-)sponsors of a bill as well as their ideal points.

To estimate the ideal points of legislators and lobbying principals as well the location of bill cutpoints, I employed Clinton, Jackman, and Rivers’ (2004) 2-parameter item-response model (IDEAL) which is implemented by the function ideal in the R package pscl (Jackman 2015). I jointly estimated legislators and interest groups by using a combination of bridg-

22For bills that died in committee, the “votes” are based on lobbyist declarations, and, in the case of Wisconsin, committee registrations. For bills that were reported out of committee, the “votes” combine roll call votes, lobbying declarations, and, in the case of Wisconsin, committee registrations.

23This is under the assumption of symmetric preferences, which is also made in estimating IDEAL.

24The approach is similar to Peress (2013) who directly estimates ideal points, proposal locations and status quo positions on the same scale via a statistical model that combines roll call votes with bill and amendment cosponsorship data from the U.S. Senate. In the model, bill positions are estimated at final passage (or functionally equivalent) votes via the cosponsors of the originally introduced bill (for unamended bills), or via the cosponsors of the last successful amendment (for amended bills). Unlike bill sponsorship, bill cosponsorship is assumed to be non-strategic (see also Woon 2008). The status quo position is then taken to be the reflection of the proposal’s position on the estimated cutpoint. Differently from Peress (2013), I employ a statistical model that only uses roll call votes and “votes” from lobbyist declarations, and not also bill and amendment cosponsorship. Instead of estimating bill positions using data on cosponsorship, I infer the status quo positions under different assumptions about the locations of the bill proposals, which combine the ideal point estimates of legislators (and governors) with information about bill (co-)sponsors. Although estimating a joint model that estimates bill positions remains an important objective for further research, it would substantially lengthen the time required for the analysis and reduce the number of estimated status quo positions due to the requirement of a minimum number of cosponsors (see Peress 2013, 619). Other approaches for estimating the status quo positions make use of the structure of the agenda (e.g., Clinton and Meirowitz 2001; Jeong, Miller, and Sened 2009) or legislators’ survey responses in conjunction with ideal point estimates (Richman 2011).

25Starting values for legislators and lobbying principals were obtained via scaled eigenvectors of the agreement score matrix, calculated by selecting the option eigen in the ideal function. I discarded the first 100,000 iterations and thinned the subsequent 400,000 iterations by sampling from every 100th iteration, resulting in 4,001 samples from the posterior distribution. I examined convergence through a combination of commonly used tests (Heidelberger and Welch 1983; Gelman and Rubin 1992) on the posterior distribution of three chains and a visual analysis of the trace plots (see Appendix D).
ing observations to provide sufficient “glue” (Poole 2005) for combining otherwise disjoint parts of the vote matrix. Interest groups whose lobbyists took positions in multiple states, chambers, or years permit merging across states, chambers, and sessions. Further, politicians who served in both chambers of a legislature or in multiple sessions help to bridge across chambers and sessions.\(^{26}\) The fact that interest groups disclose positions on bills that die in committee as well as bills that are reported out of committee allows me to estimate the cutpoints for both types of bills.\(^{27}\)

To infer the status quo positions for bill proposals, I used a set of different assumptions about the location of bill proposals (see Table 1). First, I employ the “naive” assumption that the location of the proposed bill is given by the ideal point of its sponsor (see Peress 2013, 622). For bills that are introduced by a committee, I alternatively assume that the proposal location is given by the median committee member (Assumption 1a) or the committee chair (1b).

\(^{26}\)In order to estimate an ideal point for a legislator or principal, I required them to have a minimum number of nine votes for which a cutpoint can be estimated. Further, for each bill version, I required at least nine legislators or principals who “voted”, with at least two voting on the minority side. (More specifically, I required that the minority vote was greater or equal to the maximum of 2 and 2.5% of the legislators and principals who “voted”.) Votes that did not meet this requirement were also dropped. In addition, I dropped votes where all legislators voted unanimously, even if a sufficient number of lobbying principals had a different position, since the legislators and lobbying principals cannot assumed to have the same item parameters (see, e.g., Jessee 2016).

\(^{27}\)Although the underlying theory assumes voting between binary choices (e.g., between proposal \(\zeta_j\) and status quo \(\psi_j\)), the positions of these choices are not identified in the model. Instead, the model, which is given by \(P(y_{ij} = 1) = \Phi(\beta_j x_i - \alpha_j)\) only identifies the cutpoint of a vote, indicating the point of indifference between the proposal and the status quo. Here, \(P(y_{ij} = 1)\) is the probability that actor \(i\) votes “yea” on proposal \(j\), \(\Phi(.)\) is the standard normal distribution function, \(\beta_j\) is the item discrimination parameter which indicates the direction of proposal \(j\) relative to the “nay” (or status quo) position, \(x_i\) is the ideal point of actor \(i\), and \(\alpha_j\) is the item difficulty parameter. The cutpoint indicating the point of indifference between the “yea” and “nay” positions is given by \(\frac{\alpha_j}{\beta_j}\). (Since the estimated parameters \(\alpha_j\) and \(\beta_j\) are equal to \(\alpha_j = (\zeta_j' \zeta_j - \psi_j' \psi_j) / \sigma_j\) and \(\beta_j = 2(\zeta_j - \psi_j) / \sigma_j\), the cutpoints are identified in IDEAL, because \(\sigma_j\) drops out when dividing \(\alpha_j\) by \(\beta_j\). IDEAL’s default priors on \(\alpha_j\) and \(\beta_j\) result in a very vague implied prior for the cutpoint. For this reason, I follow the approach detailed in Clinton and Jackman (2009) and set the prior variances of the item parameters to \(\alpha_j \sim N(0,1)\) and \(\beta_j \sim N(0,36)\) to obtain a more reasonable implied prior for \(\frac{\alpha_j}{\beta_j}\).
Table 1: Assumptions About the Locations of Bill Proposals

<table>
<thead>
<tr>
<th>Sponsor’s Ideal Point</th>
<th>Median of Cosponsors’ Ideal Points/ Sponsor’s Ideal Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee Bill:</td>
<td></td>
</tr>
<tr>
<td>Median Member (1a)</td>
<td>Chair (1b)</td>
</tr>
<tr>
<td>Committee Bill:</td>
<td></td>
</tr>
<tr>
<td>Median Member (2a)</td>
<td>Chair (2b)</td>
</tr>
<tr>
<td>Committee Bill:</td>
<td></td>
</tr>
<tr>
<td>Median Member (3)</td>
<td>Chair (3)</td>
</tr>
<tr>
<td>Committee Bill:</td>
<td></td>
</tr>
<tr>
<td>Median Member (1c)</td>
<td>Chair (1d)</td>
</tr>
<tr>
<td>Committee Bill:</td>
<td></td>
</tr>
<tr>
<td>Median Member (2c)</td>
<td>Chair (2d)</td>
</tr>
<tr>
<td>Committee Bill:</td>
<td></td>
</tr>
<tr>
<td>Median Member (3)</td>
<td>Chair (3)</td>
</tr>
</tbody>
</table>

Note: This table shows a set of assumptions about the location of proposed bills. Under Assumptions 1a and 1b, the location of a proposed bill is given by the ideal point of its sponsor. For bills that are introduced by a committee, the bill location is given by the median committee member (1a) or the chair (1b). Under assumptions 1c and 1d, the bill location is given by the median of all cosponsors’ ideal points, or, if there are no cosponsors, by the sponsor’s ideal point. For bills that are introduced by a committee, the bill location is given by the median committee member (1c) or the chair (1d). Assumptions 2a-2d moderate Assumptions 1a-1d by taking the midpoint of the previously assumed position and the chamber median. Under Assumption 3, all introduced bills have the position of the chamber median.

In the next set of assumptions (1c and 1d), I assume that the bill position is given by the median of all cosponsors’ ideal points, or, if there are no cosponsors, the sponsor’s ideal point. These assumptions are motivated by a sincere model of bill cosponsorship (Woon 2008; Peress 2013) as well as the objective of keeping bills in the sample that do not have cosponsors. For bills that are introduced by a committee, I assume that the proposal location is given by the median committee member (1c) or the committee chair (1d).

28 In Wisconsin, there is a distinction between coauthors (co-introducers from the same chamber) and cosponsors (co-introducers from the other chamber). In my analysis, I treated these coauthors as cosponsors. For bills introduced by state agencies in Iowa, I coded the bill position as the governor’s ideal point.
Woon (2008) and Peress (2013) provide evidence that bill sponsors moderate their proposals. Therefore, for each of the above assumptions about the position of the proposed bill, I moderate the assumed position by taking the cutpoint of the previously assumed position and the chamber median (Assumptions 2a-2d). Finally, in line with a pure “winning-motivated” theory of bill sponsorship (Woon 2008, 203), I assume that all introduced bills have the position of the chamber median (Assumption 3). For each case and estimated bill cutpoint, I used the estimated direction of the item-discrimination parameters (β_j) in combination with the cutpoint estimates to test if the assumed bill locations are sensible. 29

3.3 Adapting Gatekeeping Hypotheses to State Legislatures

Since the party cartel and pivotal politics gatekeeping hypotheses are derived from theories about committees in Congress, they need to be modified before applying them to state legislatures with a different set of rules and institutions. 30 In Iowa and Wisconsin, chamber rules put legislators of the majority party in positions that would allow them to block legislation, in a way that is at least partly consistent with the party cartel theory (Cox and McCubbins 2005, Chapter 3). 31 In the 2005-2006 legislature, when divided control of the Iowa Senate

29For example, for a proposed bill j, $CP_j > BP_j$ would not be consistent with $\beta_j > 0$, since it would imply that a legislator with an ideal point equal to the proposal location would reject the bill.

30The party cartel theory predicts that bills which are referred to committees in the U.S. House of Representatives and for which the status quo position is in the majority party blockout zone should be blocked from coming to the floor (Cox and McCubbins 2005, 43). Let m be the floor median and D (R) the majority Democratic (Republican) party median. Then the majority party blockout zone is given by $[2D - m, m]$ when Democrats are the majority party and by $[m, 2R - m]$ when Republicans are the majority party. See Appendix E.1 for the combinations of cutpoints, bill positions and item-discrimination parameters in which a bill should be blocked. Further, I take the pivotal politics theory to predict that a bill will be blocked by a congressional committee if the status quo position lies in the gridlock interval. The gridlock interval is the range of status quo positions between the relevant lower and upper pivots.

31First, agents of the majority party are put in the position of selecting committee chairs (see Iowa House Rule 46, Iowa Senate Rule 34, Wisconsin Assembly Rule 9(2)(b), and Wisconsin Senate Rule 20(2)(a)). Second, procedural rules put committee chairs in these chambers in a position to (potentially) delay or kill legislation. Third, the same is true for rules on calendar scheduling by agents of the majority party.
meant that each committee was co-chaired by a Democrat and a Republican, I take the party cartel theory to predict that bills with status quo policies in either party’s blockout zone will be blocked.

In Nebraska, the absence of rules that recognize the majority party, would make it surprising to observe partisan gatekeeping, and therefore provide an interesting test case for the party cartel theory.32 Although all analyzed sessions in Nebraska (2003-2016) have a majority of self-identified Republicans, Democrats are regularly elected to chair committees and often hold 50\% or more of committee seats (Schaffner 2007, 483).33 Since Democrats as well as Republicans are elected to chair committees, I tested for partisan gatekeeping by distinguishing committees by whether they were chaired by a Democrat or a Republican.

The pivotal politics’ gatekeeping hypothesis needs to be adjusted for the Iowa and Wisconsin state legislatures since their chambers, unlike the U.S. Senate, do not require a su-

32Critically, the speaker and the committee chairs of all standing and select committee are elected by secret ballot (Rule 1, Sec. 1 (a) and Rule 3, Sec. 8 (a)). The remaining committee seats are allocated by a “Committee on Committees” whose members are nominated by three regional caucuses (Rule 3, Sec. 2). The Nebraska Constitution (III-4) also requires Senators to be elected on a non-partisan ballot. Another reason why partisan gatekeeping would be surprising in Nebraska is that the rules make it relatively easy to withdraw a bill from committee (see Rule 5, Sec. 12 and Rule 3, Sec. 14.)

33While organization of the Nebraska legislature and elections for it are nonpartisan, information about the party membership of Nebraska legislators is publicly available, e.g., in the biannual Nebraska Blue Books.
permajority to shut down debate.34 Instead, only a simple majority is required to invoke cloture. For Iowa and Wisconsin, I therefore exchange the theory’s filibuster pivot with the chamber medians. Moreover, both Iowa and Wisconsin require a two-thirds majority of elected members in each chamber in order to override a gubernatorial veto.35 As a result, the gridlock intervals in Iowa and Wisconsin are given by the following lower and upper pivots:

\[
p_l = \begin{cases}
\min(m_1, m_2) & \text{if } g \geq \max(m_1, m_2) \text{ or } m_1 > g > m_2 \text{ or } m_1 < g < m_2 \\
\max(g, \min(v_1, v_2)) & \text{if } g \leq \min(m_1, m_2)
\end{cases}
\]

\[p_u = \begin{cases}
\min(g, \max(v_1, v_2)) & \text{if } g \geq \max(m_1, m_2) \\
\max(m_1, m_2) & \text{if } g \leq \min(m_1, m_2) \text{ or } m_1 > g > m_2 \text{ or } m_1 < g < m_2,
\end{cases}\]

where \(m_1\) is the lower chamber median, \(m_2\) is the upper chamber median, \(g\) the governor, and \(v_1\) and \(v_2\) are the two-thirds veto override pivots in the respective chambers.

In Nebraska, 33 out of 49 Senators are required to invoke cloture.36 Since overriding the gubernatorial veto only requires 30 votes (Nebraska Constitution Art. IV, Sec. 15 and Art.

34Under the Wisconsin Constitution (Art VIII, Sec. 8), “fiscal bills” require a quorum of two-thirds of elected members in each chamber. However, what constitutes a “fiscal bill” has tended to be narrowly defined (see Annotated Wisconsin Constitution, Art. VIII, Sec. 8, 60 Atty. Gen. 245).

35See Iowa Constitution Art. III, Sec. 16 and Wisconsin Constitution Art. V, Sec. 10.

36Rules of the Nebraska Unicameral Legislature, Rule 7, Sec. 10. Although floor debate is limited to 3 \times 5 minutes for each non-introducing speaker per pending question (Rule 2, Sec. 10), each amendment is interpreted to count as a separate question, providing many opportunities to delay debate. Further, although Rule 7, Sec. 11 enables the Speaker to declare amendments/motions by a Senator dilatory and therefore out of order, this rule can only be invoked if the Senator introduces more than 2 motions/amendments on the bill. Therefore, if 17 (49-32) Senators participated in filibustering a bill with 2 amendments/motions each, with each participating Senator debating each amendment/motion, the allowed time for debate would be over 140 hours (17 \times 2 \times 17 \times 15 = 8670 minutes). In practice, the rule on dilatory motions does not get invoked, and open filibustering occurs (see, e.g. Sen. Smith in Floor Debate on LR 23, 02/23/2004; Sen. Christensen in Floor Debate on LB485, April 3, 2014 and April 4, 2014; and Sen. Chambers in Floor Debate on Amendment to Rule 7, Sec. 3 of the Rules on January 15, 2015. Transcripts are available at http://nebraskalegislature.gov/transcripts/search_past.php).
IV, Sec. 7), the filibuster pivots on either side of the median (if ordered from most liberal to most conservative, Senators 17 and 33) define the gridlock interval in Nebraska.

3.4 A Direct Measure of Gatekeeping

To assess the relative performance of each theory’s gatekeeping hypothesis in Iowa and Nebraska, I propose the gatekeeping ratio \(GR \) which measures what fraction of the bills that each theory predicts should blocked by committee actually are blocked by committee. Formally,

\[
GR = \frac{N_{b,pb}}{N_{b,pb} + N_{-b,pb}},
\]

where \(N_{b,pb} \) is the number of bills that are blocked and are predicted to be blocked and \(N_{-b,pb} \) is the number of bills that are reported out of committee, but that are predicted to be blocked by the committee. A higher fraction indicates a better “performance” for the respective theory.

Since the object of the analysis is committee gatekeeping, unless the bill was introduced by a committee, I excluded bills that were not initially referred to a committee. Whenever a bill was withdrawn from committee by a non-unanimous vote, I assume that the committee intended to block the bill. Whenever a bill was withdrawn by unanimous consent or by a majority party leader, I treat the bill as if it was never referred to committee. To simplify the analysis, I only analyzed gatekeeping in the chamber to which a bill was first introduced.

Due to the fact that status quo positions were inferred using lobbyist declarations on initial bill versions, the gatekeeping ratio only applies to a subset of bills of original bill versions for which a cutpoint could be estimated. This subset depends on (1) the number
of estimated principals who lobbied on a bill, (2) whether a sufficient number of estimated principals lobbied on either side of the bill, (3) the reporting requirements for lobbyists, (4) and, for bills that are reported out of committee, whether the bill is amended before final passage. While these requirements narrow the applicability of the gatekeeping ratio to a subset of bills, this subset is likely to include many of the most salient and controversial bills.

4 Results

To test which of the assumption about bill location has the most face validity, I employed the model’s item parameter estimates for a simple face validity check. In particular, if the model predicts that a legislator with an ideal point at the assumed bill location is more likely to vote against the bill than in favor, the assumed bill position was deemed to lack face validity. In Table 2, I show for each assumption, the percentage of bills for which the direction of the item discrimination parameter and the assumed bill position are consistent.

Overall, the assumptions that the position of the introduced proposal is the same as the

37 In addition to the minimum vote, minimum legislator, and lopsidedness requirements (see footnote 26), the number and types of original bill versions for which a cutpoint can be estimated also depends on the reporting requirements for lobbyists. In Iowa and Wisconsin, lobbyists are required (Iowa) or permitted (Wisconsin) to report any communicated change on their principal’s position towards a bill. On the other hand, in Nebraska, lobbyist activities are only required to be reported once per year. Since it cannot automatically be assumed that support for an amended bill implies support for the original version, this limits the number of introduced and amended bill versions for which a cutpoint can be estimated. Finally, for bills that are reported out of committee and receive a roll call vote, the vote can be used to estimated the cutpoint as long as the bill was not successfully amended. See Appendix F for an overview of the number of bills for which a cutpoint can be estimated, as well as the total number of bills in each legislature.

38 Appendix G also compares the assumed bill positions with estimated bill positions from IDEAL. Estimated positions were calculated via a translation of the IDEAL parameters to a bill “midpoint” and a bill “spread” (see Carrol et al. 2009, 564-565). The estimated bill positions lack face validity in that a large proportion is more extreme than the most extreme legislators.

39 For example, for a proposed bill \(j \), \(CP_j > BP_j \) would not be consistent with \(\beta_j > 0 \), since it would imply that a legislator with an ideal point equal to the proposal location would reject the bill. Another possibility would be that the vote is not well captured by the estimated dimension. In an additional robustness check (see Appendix H), I excluded all votes that did not strongly map onto the estimated dimension.
Table 2: Face Validity Test of Assumed Location of Bill Proposals

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>(1a)</th>
<th>(1b)</th>
<th>(1c)</th>
<th>(1d)</th>
<th>(2a)</th>
<th>(2b)</th>
<th>(2c)</th>
<th>(2d)</th>
<th>(3)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iowa</td>
<td>88.1</td>
<td>88.1</td>
<td>88.6</td>
<td>88.5</td>
<td>86.5</td>
<td>86.6</td>
<td>86.7</td>
<td>86.7</td>
<td>80.2</td>
<td>1437</td>
</tr>
<tr>
<td>Nebraska</td>
<td>66.3</td>
<td>65.4</td>
<td>61.6</td>
<td>61.6</td>
<td>53.7</td>
<td>73.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>94.1</td>
<td>94.2</td>
<td>91.5</td>
<td>91.3</td>
<td>86.3</td>
<td>1259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>85.5</td>
<td>85.4</td>
<td>82.9</td>
<td>82.9</td>
<td>76.8</td>
<td>3428</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table shows the performance of each of the assumptions from Table 1 in the face validity test that the estimated sign of the item discrimination parameter points to a bill location that is to the same side of the cutpoint as the assumed bill location. Each cell shows the percentage of cutpoint estimates from votes on original bill versions for which this is the case. The first three rows shows the proportion in Iowa, Nebraska, and Wisconsin respectively. The fourth row shows the performance across all three states.

estimated ideal point of the sponsor, or the median position of all cosponsors, (1a-1d) always performs better than the assumptions of “moderation” (2a-2d), or that of the chamber median (3).40 Overall, assumption 1a, that the proposal location is given by the sponsor’s ideal points, performs best.41 In the following, I therefore present the results using Assumption 1a, and using only those status quo positions that passed the face validity test.42

Figure 2 presents the inferred status quo positions of bills that are reported out (red) or blocked (black) by committees in the Iowa House (columns 1 and 2) and Iowa Senate (columns 3 and 4). Columns 1 and 3 show the distributions of status quo positions for bills in the House and the Senate. Column 2 shows a close-up of the majority party blockout zone and the gridlock interval in the House. Column 4 does the same for the Senate. The results in the House show that many bills with status quo positions in the blockout zone die in committee, while few bills in the blockout zone are reported to the floor. By contrast,

40The relatively poor performance of all assumptions in Nebraska is consistent with previous accounts that have found a higher “dimensionality” in the voting behavior of the Nebraska legislators (Wright and Schaffner 2002; Shor and McCarty 2011).

41If the sponsor is a committee, the assumed position is the median of committee members’ ideal points.

42I present the results under the remaining assumptions in Appendix H. Other than Assumption 3 (the proposal location is given by the chamber median) which performs worst in terms of face validity, all assumptions yield substantially similar results.
there are many bills with status quo positions in gridlock interval that are reported out. These results are consistent with the partisan gatekeeping hypothesis. In the Senate, there is no noticeable difference in the performance of either hypothesis.

For a direct test of the performance of each hypothesis, I turn to the gatekeeping ratio described in section 3.4.\footnote{The gatekeeping ratio is the proportion of all bills (referred to or introduced by committees) with status quo positions in a theory’s predicted censored interval that is blocked by committee.} I calculated the ratio for each of the 4,001 samples from the posterior distribution and aggregate the ratios for each sample in order to characterize the uncertainty around the measure. Figure 4 shows the gatekeeping ratios for the party cartel and the pivotal politics-derived gatekeeping hypotheses in Iowa.

The first panel of Figure 3 compares each theory’s gatekeeping ratio by aggregating across all Iowa legislatures between 2005-2016 (House and Senate). For this aggregated sample, the gatekeeping ratio of the party cartel theory (average of 0.78) is much higher than that of the pivotal politics-derived hypothesis (average of 0.60). A look at panels 2 and 3 shows that this difference is still greater for the House, while there is little difference in the predictive performance in the Senate. In chambers under Republican control, the evidence supports the party cartel over the pivotal politics-derived hypothesis on gatekeeping. It is interesting to note that during periods of unified government (by the Democrats, 2007-2010), there are few estimated status quo positions in either of the censored intervals, and both hypotheses perform equally well. Overall, there is also no difference in the predictive performance for chambers under Democratic control.\footnote{This analysis cannot distinguish between whether these differences are driven by the party in control, unified vs. divided government, lower vs. upper chamber, or other potential factors.}

The 81st Iowa Senate (2005-2006) represents a special case since Democrats and Republicans each had 25 senators. As part of a power-sharing agreement between the parties,
Figure 2: Inferred Status Quo Positions of Reported and Blocked Bills in Iowa (2005-2016)

Note: The panels display the inferred status quo positions of bills that are reported out (red) or blocked (black) by committee in the Iowa House (columns 1 and 2) and Senate (columns 3 and 4) from 2005 through 2016. The positions were inferred using bill cutpoint estimates and Assumption 1c (the proposal locations are given by the median of all cosponsors’ ideal points, or, if there are no cosponsors, the sponsor’s ideal point). Columns 1 and 3 show the status quo distributions. Columns 2 and 4 zoom in to the blockout zone (light gray), the gridlock interval (medium gray), as well as their intersection (dark gray).
Figure 3: Gatekeeping Ratios in Iowa (2005-2016)

Note: The panels in this figure show the gatekeeping ratios for the party cartel and pivotal politics-derived gatekeeping hypotheses in Iowa. The boxplots were constructed using 4,001 samples from the posterior distribution. The top panel aggregates the inferred status quo positions from all Iowa legislatures from 2005 through 2016 (House and Senate). Panels 2 and 3 show the gatekeeping ratios for the House and Senate across all sessions. Panel 4 displays the gatekeeping ratios for chambers where Democrats had a majority (House: 2007-2010; Senate: 2005-2016, including 2005-2006 split (25/25)). Panel 5 displays the gatekeeping ratios for chambers where Republicans had a majority (House: 2005-2006 and 2011-2016; Senate: 2005-2006 (split majority)). Panels 6 and 7 show the gatekeeping ratios for periods of divided (2005-2006 and 2011-2016) and unified government (2007-2010).
Senate committees did not have one chair, but two co-chairs that alternated on a weekly basis. In that regard, it is interesting to note that 2005-2006 is the only biennium with Republican legislators chairing committees where bills with estimated status quo positions in the Republican blockout zones are reported to the floor.

The panels in Figure 4 display the inferred status quo positions of bills in the unicameral Nebraska legislature from 2003 through 2016. Columns 1 and 2 show the inferred status quo positions of bills referred to committees chaired by Democrats. The status quo positions of bills referred to committees chaired by Republicans are shown in columns 3 and 4. While columns 1 and 3 show the distributions of inferred status quo positions, columns 2 and 4 zoom in to the blockout zone (light gray), the gridlock interval (medium gray), as well as their intersection (dark gray). Each panel displays the respective party’s blockout zone.

In general, few bills reported out of committee have status quo positions in either the blockout zone or the gridlock interval. In part, this may be due to the low number of bills reported out of committee for which a status quo position could be inferred. There are no noticeable patterns in the distributions of status quo positions of blocked and reported bills, by whether they were introduced to committees chaired by Democrats or Republicans. Figure 5, which displays the gatekeeping ratios for Nebraska, shows that there is also no difference in how well the party cartel and the pivotal politics model predict gatekeeping. Moreover, there is no difference between the theories when considering only bills that were referred to committees chaired by Democrats (panel 2) or Republicans (panel 3).

Figure 6 presents the inferred status quo positions of bills that are reported out or

\[46\] About a third of the status quo positions from Nebraska were excluded, because the assumed bill position was not consistent with the item parameters.
Figure 4: Inferred Status Quo Positions of Reported and Blocked Bills in Nebraska (2003-2016)

Note: The panels show the inferred status quo positions of bills that are reported out (red) or blocked (black) by committee in the Nebraska legislature from 2003 through 2016. The positions were inferred using bill cutpoint estimates and Assumption 1a (the proposal locations are given by the sponsor’s ideal points). The inferred positions of bills referred to committees chaired by Democrats (columns 1 and 2) and Republicans (columns 3 and 4) are shown separately. Columns 1 and 3 show the status quo distributions. Columns 2 and 4 zoom in to the blockout zone (light gray), the gridlock interval (medium gray), as well as their intersection (dark gray). For bills referred to committees with Democratic or Republican chairs, I show the respective party’s blockout zone.
Figure 5: Gatekeeping Ratios in Nebraska (2003-2016)

Note: The panels in this figure show the gatekeeping ratios for the party cartel and the pivotal politics-derived gatekeeping hypotheses in Nebraska. The gatekeeping ratio is calculated as the number of blocked bills out of the sum of blocked bills and bills reported to the floor for which the status quo policy lies in the censored interval. The boxplots of the ratios were constructed using the 4,001 samples from the posterior distribution. The top panel pools the inferred status quo positions from 2003 through 2016. Since the Nebraska legislature is organized along nonpartisan lines and Democrats as well as Republicans chair committees, distinguish between bills referred to a committee chaired by a Democrat and bills referred to a committee chaired by a Republican.
Figure 6: Inferred Status Quo Positions of Reported and Blocked Bills in Wisconsin (2003-2016)

Note: The panels display the inferred status quo positions of bills that are reported out (red) or blocked (black) by committees in the Wisconsin Assembly (columns 1 and 2) and Senate (columns 3 and 4) from 2003 through 2016. The positions were inferred using bill cutpoint estimates and Assumption 1a (the proposal locations are given by the sponsor’s ideal points). Columns 1 and 3 show the status quo distributions. Columns 2 and 4 show a close-up of the blockout zone (light gray), the gridlock interval (medium gray), as well as their intersection (dark gray).
Note: The panels in this figure show the gatekeeping ratios for the party cartel and the pivotal politics-derived gatekeeping hypotheses in Wisconsin. The boxplots were constructed using the 4,001 samples from the posterior distribution. The top panel aggregates status quo positions from 2003 through 2016. Panels 2 and 3 show the gatekeeping ratios separately for assembly and Senate across all sessions. Panel 4 displays the gatekeeping ratios for chambers with a Democratic majority (assembly: 2009-2010; Senate: 2007-2010). Panel 5 displays the gatekeeping ratios for chambers with a Republican majority (assembly: 2003-2008 and 2011-2016; Senate: 2003-2006 and 2011-2016). Panels 6 and 7 show the gatekeeping ratios for periods of divided (2003-2008) and unified government (2009-2016).
blocked by committees of the Wisconsin Assembly (columns 1 and 2) and the Wisconsin Senate (columns 3 and 4) from 2003 through 2016. Columns 1 and 3 show the distribution of all status quo positions in the range of estimated ideal points. Columns 2 and 4 show a close-up of the blockout zone (light gray), the gridlock interval (medium gray), as well as their intersection (dark gray).

The estimated status quo positions show share similarities with those estimated for Iowa. First, there appears to be the same difference in gatekeeping between the chambers. In the assembly, the gatekeeping ratio of the partisan hypothesis is higher than that of nonpartisan one (see Figure 7). Similarly, in the Senate, it is not possible to distinguish between the two gatekeeping ratio. Moreover, the partisan hypothesis outperforms the nonpartisan hypothesis for Republican controlled chambers, while the theories perform equally well for chambers controlled by Democrats. In the periods of divided government (2003-2008), there were also a substantial number of introduced bills with status quo positions in the censored intervals. Many of these bills were reported out of committee, especially bills with status quo policies in the gridlock intervals. On the other hand, in the period of unified government (2009-2016) there were only a small number of introduced bills (with estimated cutpoints) with a status quo policy in the censored intervals.

5 Discussion

The direct tests of committee gatekeeping in Iowa and Wisconsin show greater evidence for the partisan (party cartel) gatekeeping hypothesis than the non-partisan gatekeeping

\footnote{The 95\% credible interval of the difference between the two proportions includes zero.}
hypothesis (derived from the pivotal politics theory). Unsurprisingly, in the nonpartisan
Nebraska legislature, both theories perform equally well and there is no noticeable difference
in gatekeeping between committees chaired by Democrats and Republicans.48 In addition,
two patterns stand out and invite further study. The partisan gatekeeping hypothesis out-
performs the nonpartisan hypothesis in lower chambers, as well as in Republican controlled
chambers.49 Since the party cartel theory is partly motivated by the “Hastert Rule” (Cox
and McCubbins 2005, 37), named after the former Republican Speaker of the U.S. House,
one potential explanation would be that the principle of the “majority of the majority” is
emphasized more by Republicans than Democrats.

In Iowa and Wisconsin, the lower chambers appear more “diligent” in screening out bills
in the majority party blockout zone than the upper chambers. This appears to be driven
partly by the greater number of introduced bills with such status quo positions in the lower
chambers. While committees in the Wisconsin Assembly have more procedural rights than
in the Senate, the differences between committees in the Iowa House and Senate are very
small. Further research is needed to examine whether position-taking or imperfect informa-
tion may be driving the fact that a large number of bills with a high likelihood of failure get
introduced in lower chambers compared to upper chambers.50

48As discussed above, the low number of bills reported out of committee for which a status quo could
be estimated is partly due to the reporting requirements in Nebraska. Since Nebraska provides summaries
and transcripts of committee hearings, lobbyist positions during these hearings could be leveraged to obtain
additional status quo estimates of bills reported out of committee.

49In both Iowa and Wisconsin, evidence for the partisan hypothesis is also stronger during divided govern-
ment, but not during unified government. This analysis cannot distinguish between whether these differences
are driven by the party in control, unified vs. divided government, lower vs. upper chamber, or other potential
factors.

50Since many legislators in upper chambers serve in lower chambers first, they may (on average) be more
experienced than legislators in lower chambers, and may therefore have better information to anticipate
which legislation is likely to die in committee. Another possible explanation is pure position-taking. While
the term length of Iowa and Wisconsin Senators is four years, representatives in the lower chambers of both
states are up for re-election every two years. Iowa and Wisconsin do not have term limits for state legislators.
The analysis in this paper can be extended in several ways. Similar to Peress (2013), bill and amendment cosponsorship information could be used in a model that estimates rather than assumes bill locations in order to infer status quo policies. Moreover, position data from interest groups and corporations lobbying in Congress (www.maplight.org) may be used to extend the analysis to Congress. Lastly, the analysis of negative agenda control can be extended beyond the committee stage to analyze, e.g., which status quo policies are associated with bills that receive a final passage vote, bills that pass the first chamber, and bills that are enacted into law.

Therefore, a greater focus on campaign-relevant position-taking may override concerns about whether a bill is likely to pass. Another potential explanation could be that the legislators in the lower chamber benefit more from the party reputation (Cox and McCubbins 2005) which increases the need for partisan gatekeeping.
References

